

TCP/IP Troubleshooting for Systems Administrators

Release 2.3.4 - February 2005

TCP/IP Troubleshooting for Systems Administrators

PUBLISHED BY:
Darren Hoch
hochdarren@gmail.com

Copyright 2008 Darren Hoch. All rights reserved.

No parts of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the Darren Hoch.

For a collection of all papers by Darren Hoch:

http://www.ufsdump.org

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 4 of 60

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 5 of 60

Table of Contents

Table of Contents ..5

1.0 Introduction to TCP/IP Troubleshooting ...7

1.1 Reactive Troubleshooting ..7

1.2 Proactive Troubleshooting ...7

2.0 Review of the TCP/IP Stack ..9

3.0 Troubleshooting with Packet Capture...10

3.1 libpcap Based Tools..10

3.1.0 The tcpdump Utility... 10

3.1.1 The tethereal Utility .. 12

3.1.1 Using the dsniff Utility.. 13

3.2 Using Filter Expressions ..13

4.0 Troubleshooting Ethernet...16

4.1 Ethernet and the ARP Protocol..18

4.1.0 Case Study – Router Down or Ignoring You? ... 20

4.1.1 Case Study – Duplicate IP Addresses on the Network 21

4.1.2 Another Host Stole Your IP.. 22

5.0 Troubleshooting IP Connectivity ...24

5.0.1 Case Study – Quick IP Routing Troubleshooting .. 25

5.1 The ICMP Protocol...26

5.2.0 Case Study – Misconfigured Broadcast Address 1 ... 27

5.2.1 Case Study – Misconfigured Broadcast Address 2 ... 28

5.2.2 Case Study – Stubborn DHCP Client .. 28

6.0 Troubleshooting TCP Connectivity ...31

6.1 TCP Connection Oriented..32

6.1.0 Opening a Connection ... 32

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 6 of 60

6.1.1 Closing a Connection... 33

6.1.3 Case Study – Service Not Running ... 33

6.1.4 Case Study – Service Denying Access ... 34

6.1.5 Case Study – Firewall Blocking Access .. 35

6.1.6 Case Study – Rude SMTP Server... 35

6.2 Connection Oriented - State Transitions..36

6.2.1 Case Study – Remote Host is Ignoring You.. 37

6.2.2 Case Study – Network Performance or Denial of Service............................... 37

6.3 TCP Reliability and Statefulness..38

7.0 Introducing Network Monitoring ..39

7.1 Ethernet Configuration Settings ...39

7.2 Monitoring Network Throughput...40

7.2.0 Using iptraf... 40

7.2.1 Using netperf.. 41

7.3 Monitoring for Error Conditions ..43

7.4 Monitoring Traffic Types ..44

7.5 Displaying Connection Statistics tcptrace..45

7.5.0 Case Study – Using tcptrace... 45

Appendix A - Troubleshooting DNS Issues ..49

Appendix B - Manual Network Configuration ...55

References ...60

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 7 of 60

1.0 Introduction to TCP/IP Troubleshooting

The core of modern IT infrastructure is based on multiple interconnected networks.
Without networks, almost all of the infrastructure that powers the way we conduct our
very lives would be useless. Networks rely on the use of common protocols. A
networking protocol is a set of communications standards that define how two systems
pass information.

The TCP/IP protocol has evolved into the most common networking protocol on the
earth. Everything from the home network built on the $50 Taiwanese built router to
the trunks of major telecom providers use this protocol. All 21st century computing
tasks such as social networking, SOA architecture, and compute clusters rely on TCP/IP
to transmit the data required to accomplish tasks.

As with anything built by a human, that thing will eventually break down and require
troubleshooting, maintenance, and repair. The TCP/IP protocol is no exception. The
focus of this paper is to use the most common open computing platform, Linux, to
develop a disciplined approach to troubleshooting the TCP/IP network. The Linux
platform provides a robust set of network debugging tools that provide insight into the
most common network problems.

This paper breaks troubleshooting into two sections: reactive and proactive.

1.1 Reactive Troubleshooting
Reactive troubleshooting identifies problems in network communication that
result in errors. Examples of these errors include: hosts or networks
unreachable and applications unavailable. The reactive section breaks
troubleshooting into 4 categories based on protocol: Ethernet/ARP, IP/ICMP,
TCP/UDP, and application. For each category, the paper will describe the
important components of the protocol, how to use tools to monitor for errors,
how to correlate the output from the tools, and the corrective actions that
need to be taken.

Example tools include tcpdump, tethereal, dsniff, Wireshark,
netstat, arp, route and ifconfig. Example case studies include
troubleshooting ARP, IP routing, TCP states, and common application protocols.

1.2 Proactive Troubleshooting
Proactive troubleshooting identifies problems that result in poor performance.
Examples include slow response times or limited throughput. The proactive
section examines the network as a whole, identifying all of the parts of the
network that contribute to poor performance.

Example tools include ethtool, tcptrace, iptraf, netperf, and ntop.
Example case studies include saturated network links and improper network
settings.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 8 of 60

This paper assumes that the reader has a base understanding of how to use a Linux
system, basic TCP/IP knowledge, and experience using the basic network
monitoring tools.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 9 of 60

2.0 Review of the TCP/IP Stack

The TCP/IP stack consists of 5 layered protocols. Of these 5 layers, a system
administrator troubleshoots the top 4. The link layer consists of cables, wires, and the
actual signals bits that are passed along the wire. A TCP/IP stack running on a network
device organizes these bits into 4 transportation protocols. Each transportation
protocol has a specific responsibility in the flow of data.

Figure 1: Standard “5 Layer” Model

ETHERNET

IP

TCP/UDP

APPLICATION

ARP

ICMP

LINK

The protocol responsibilities are listed below:

• ETHERNET – defines the address of the next physical host that
processes the data, either another host on the network or a router
to another network

• IP – defines the address of the next network host that should
process the data, either a host on the current network or a router
to another network

• TCP/UDP – defines the application port that of the receiving host
on the network

• APPLICATION – contains the data payload that must be processed
by the application

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 10 of 60

3.0 Troubleshooting with Packet Capture

Packet capture is the process of collecting and analyzing TCP/IP packets on an Internet
connection. Network cards have the ability to listen to both traffic destined only to
their specific device and traffic destined to all devices. The mode of capturing all
traffic (also know as “sniffing” or “snooping”) on the wire is known as promiscuous
mode. The ability to for a system administrator to listen to traffic in this mode
depends on two things: privileges and location on the network.

Almost all packet sniffing tools require super user privileges the commands. A non-
routing node in promiscuous mode monitors traffic to and from other nodes within the
same collision domain (for Ethernet and Wireless LAN) or ring (for Token Ring or FDDI)
and broadcast domain.

A collision domain includes all the nodes that share a single wire. Deprecated
equipment , such as network hubs, place all nodes on a single wire. Modern
switches build “virtual wires” between two end points, eliminating collisions on a
network and the ability to snoop in promiscuous mode.

Network switches are used to combat malicious use of promiscuous mode and therefore
limit a node’s collision domain to broadcast traffic and unicast traffic from the host. To
capture traffic, a systems administrator needs access to a router that will monitor all
traffic that it routes. If the router is not accessible, a node may have access to a
physical port on a switch that displays a copy of all traffic (also known as a port
mirror).

3.1 libpcap Based Tools

The libpcap library is a system independent interface for user level packet
capture. This library provides a high-level API for packet capture, which
creates a simple packet capture abstraction layer for developing tools. As a
result, many Linux based packet capture utilities use the libpcap interface as
their underlying packet capture engine. Due to the portability of this code, all
utilities that use the libpcap library share the same syntax. The most
common utilities that use the libpcap library are tcpdump and ethereal.

3.1.0 The tcpdump Utility

The tcpdump utility is the most common packet capture utility for Linux based
systems. It ships as a standard package with every common Linux distribution
and is often included in the default installation or available via standard
package managers. The source code for the utility is located at
http://www.tcpdump.org.

The tcpdump command in and of itself produces volumes of data on a busy
network.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 11 of 60

box:~# tcpdump
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth0, linktypeEN10MB (Ethernet), capture size 96 bytes
10:19:23.042904 IP 192.168.1.60.ssh > 192.168.1.102.hpidsadmin: P
51744:51888(144) ack 561 win 15232
10:19:23.043898 IP 192.168.1.60.ssh > 192.168.1.102.hpidsadmin: P
51888:52032(144) ack 561 win 15232
10:19:23.046280 IP 192.168.1.60.ssh > 192.168.1.102.hpidsadmin: P
52032:52176(144) ack 561 win 15232
10:19:23.048005 IP 192.168.1.102.hpidsadmin > 192.168.1.60.ssh: . ack
52304 win 16960
10:19:23.049376 IP 192.168.1.60.ssh > 192.168.1.102.hpidsadmin: P
52304:52448(144) ack 561 win 15232
10:19:23.051003 IP 192.168.1.102.hpidsadmin > 192.168.1.60.ssh: . ack
52576 win 16688
10:19:23.052322 IP 192.168.1.60.ssh > 192.168.1.102.hpidsadmin: P
52576:52720(144) ack 561 win 15232
10:19:23.054006 IP 192.168.1.60.ssh > 192.168.1.102.hpidsadmin: P
52720:52864(144) ack 561 win 15232
10:19:23.056292 IP 192.168.1.60.ssh > 192.168.1.102.hpidsadmin: P
52864:53008(144) ack 561 win 15232

By default, the tcpdump command attempts to resolve the IP address of all
connections inbound to the node. If the node does not have access to a DNS
server, the packets captured by tcpdump are delayed until resolution. Another
issue is that tcpdump defaults to the primary interface on a node. If a systems
administrator desires to monitor any other interface, he or she must specify it
explicitly.

In the following example, the “-i” specifies another Ethernet interface
besides the default (eth0). Also included is the “-n” option which turns of
host and port resolution.

box:~# tcpdump -ni eth1
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth1, linktype EN10MB (Ethernet), capture size 96 bytes

19:47:22.935554 IP 192.168.1.105.32783 > 67.110.253.165.25: P
3432387228:3432387265(37) ack 2742259796 win 63712 <nop,nop,timestamp
239675 1064682926>

19:47:22.967508 IP 67.110.253.165.25 > 192.168.1.105.32783: P 1:54(53)
ack 37 win 1984 <nop,nop,timestamp 1064879093 239675>

Line spaces are inserted into the previous output for the sake of clarity and
explanation.

Each line in the previous output describes a single packet. The line items are
described below.

• Real Time: 19:47:22.967508

• Source IP Address: IP 67.110.253.165.25

• Direction of Packet Flow: >

• Destination Address: 192.168.1.105.32783:

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 12 of 60

• TCP Flags: P

• TCP Source SYN Number: 1:

• Next TCP SYN Number: 54(53) # original SYN (1) + payload (53) =
next SYN (54)

• TCP ACK NUMBER: ack 37

• TCP Window Size: win 1984

• TCP Options: <nop,nop,timestamp 1064879093 239675>

In some cases, traffic needs to be monitored now and reviewed offline or the
volume of traffic to be monitored is too great for a standard terminal window
buffer. The option “-w” writes a packet to a file and the option “-r” reads the
capture file.

box:~# tcpdump –w /tmp/tcp.out –ni eth1
tcpdump: listening on eth1, linktype
EN10MB (Ethernet), capture size 96 bytes
46 packets captured
46 packets received by filter
0 packets dropped by kernel

box:~# tcpdump –r /tmp/tcp.out –ni eth1
reading from file /tmp/tcp.out, linktype EN10MB (Ethernet)

19:56:07.190888 IP 192.168.1.105.32783 > 67.110.253.165.993: P
3432387731:3432387768(37) ack 2742260475 win 63712 <nop,nop,timestamp
292100 1065283060>

19:56:07.227315 IP 67.110.253.165.993 > 192.168.1.105.32783: P 1:54(53)
ack 37 win 1984 <nop,nop,timestamp 1065403449 292100>

<<snip>>

3.1.1 The tethereal Utility

Just like tcpdump, ethereal is based on the libpcap interface. There are two
main versions of ethereal. There is the text version called “tethereal” and
the GUI based version called “Wireshark”. The text based version is very
similar in syntax to the tcpdump command syntax. Once again, this is because
they use the same underlying libpcap engine.

box:~# tethereal –w /tmp/ethereal.out –ni eth1
Capturing on eth1
0.327450 192.168.1.105 > 67.110.253.165 TLS Application Data
0.361175 67.110.253.165 > 192.168.1.105 TLS Application Data
0.361220 192.168.1.105 > 67.110.253.165 TCP 32783 > 993 [ACK]
Seq=37 Ack=53 Win=63712 Len=0 TSV=389797 TSER=1066380554
0.363460 192.168.1.105 > 67.110.253.165 TLS Application Data
0.410951 67.110.253.165 > 192.168.1.105 TLS Application Data

box:~# tethereal –r /tmp/ethereal.out
6 2.543822 192.168.1.105 > 67.110.253.165 TLS Application Data
7 2.593330 67.110.253.165 > 192.168.1.105 TLS Application Data

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 13 of 60

8 2.593375 192.168.1.105 > 67.110.253.165 TCP 32783 > imaps [ACK]
Seq=37 Ack=53 Win=63712 Len=0 TSV=412045 TSER=1066603077
9 2.595989 192.168.1.105 > 67.110.253.165 TLS Application Data

The default output of tethereal is less detailed than the tcpdump output.
The differences are listed below:

• Packet numbering – the first column of output shows the packet
number relative to the order of the capture

• Relative time – the time (in seconds) the packet was captured
relative to the start of the capture (0.0 seconds)

• Application summary data – all packets summarized by
application type (TLS Application Data , for example)

The tethereal binary is a symbolic link to tshark, the “official” command line
name.

3.1.1 Using the dsniff Utility

The dsniff command is an older suite of utilities written by Dug Song
(http://monkey.org/~dugsong/dsniff/). Unlike the previously
mentioned utilities, dsniff takes packet capture one level further. Using the
underlying libpcap engine, dsniff takes the packets captured and attempts
to report something a little more useful. The dsniff program is one of many
utilities in the dsniff package. The standard dsniff command will attempt
to capture and replay all unencrypted sessions including: FTP, telnet, SMTP,
IMAP, and POP.

The following example demonstrates how to use dsniff to an ftp sessions:

dsniff -ni eth0
dsniff: listening on eth0

07/13/08 14:35:37 tcp 192.168.1.102.3832 -> 192.168.1.60.21 (ftp)
USER darren
PASS darren

The dsniff output provides the protocol, IP address, port, and credentials of
the FTP session.

The latest official release on the author’s website is 2.3. The newest release
maintained by the community is 2.4 and is available in many of the “extras”
repositories of popular Linux distributions.

3.2 Using Filter Expressions
It may be easy to identify specific traffic streams on small or idle networks. It
will be much harder to accomplish this on large WAN or saturated networks.
The ability to use filter expressions is extremely important in these cases to cut

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 14 of 60

out unwanted “noise” packets from the traffic in question. Fortunately, both
the libpcap based utilities and the snoop utility all use the same filter syntax.
There are many ways to filter traffic in all utilities, the most common filters
are by port, protocol, and host. The following example tracks only SMTP
traffic and host 192.168.1.105:

[root@targus ~]# tcpdump –ni eth0 port 25 and host 192.168.1.105
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth0, linktype EN10MB (Ethernet), capture size 96 bytes

21:13:26.905262 IP 192.168.1.105.32899 > 192.168.1.220.smtp: S
1903904803:1903904803(0) win 5840 <mss 1460,sackOK,timestamp 722613
0,nop,wscale 0>

[root@targus ~]# tethereal –ni eth0 port 25 and host 192.168.1.105
Capturing on eth0
0.000000 192.168.1.105 > 192.168.1.220 TCP 32900 > 25 [SYN] Seq=0 Ack=0
Win=5840 Len=0 MSS=1460 TSV=729689 TSER=0 WS=0

The previous two examples leverage the most common types of filter expressions:

• host – capture specific host traffic

• port – capture specific port traffic

• net – capture all traffic on a specific network

• and/or/not – standard operators to combine expressions

• src/dst – specify source and destination hosts

The following example tracks all outbound traffic to the 192.168.1.0 network from
a single source host of :

tcpdump -ni eth0 src host 192.168.1.102 and dst net 192.168.1.0/24
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
15:29:14.154742 IP 192.168.1.102.4071 > 192.168.1.60.ssh: . ack 1877201002 win
16192
15:29:14.282674 IP 192.168.1.102.4071 > 192.168.1.60.ssh: . ack 129 win 16064
15:29:14.383722 IP 192.168.1.102.4071 > 192.168.1.60.ssh: . ack 257 win 17520
15:29:14.484762 IP 192.168.1.102.4071 > 192.168.1.60.ssh: . ack 385 win 17392
15:29:14.583309 IP 192.168.1.102.4071 > 192.168.1.60.ssh: . ack 513 win 17264
15:29:14.681853 IP 192.168.1.102.4071 > 192.168.1.60.ssh: . ack 641 win 17136
15:29:14.782434 IP 192.168.1.102.4071 > 192.168.1.60.ssh: . ack 769 win 17008

There are other cases where an administrator may want to capture all but certain
types of traffic. Specifically, a lot of “noise” can be made if one is trying to run a
packet capture while logged into the remote host. Much of the traffic generated
will be the control traffic back to that host. The following example shows how to
filter the ssh control traffic to and from the control connection (192.168.1.105
connected to 192.168.1.220 as root) and all DNS traffic.

[root@targus ~]# who
root pts/2 Jun 1 21:30 (192.168.1.105)

[root@targus ~]# tcpdump –ni eth0 not host 192.168.1.105 and not port 53
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth0, linktype EN10MB (Ethernet), capture size 96 bytes

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 15 of 60

21:32:07.692524 IP 216.93.214.50.51606 > 192.168.1.220.ssh: S
2550704294:2550704294(0) win 5840 <mss 1460,sackOK,timestamp 431608120
0,nop,wscale 2>

21:32:07.692596 IP 192.168.1.220.ssh > 216.93.214.50.51606: S
729994889:729994889(0) ack 2550704295 win 5792 <mss 1460,sackOK,timestamp
111008380 431608120,nop,wscale 2>

21:32:07.796911 IP 216.93.214.50.51606 > 192.168.1.220.ssh: . ack 1 win
1460 <nop,nop,timestamp 431608221 111008380>

 The above example demonstrates how a system administrator logs into a remote
system (192.168.1.220), monitors the connections to and from that system, and
excludes the SSH control traffic coming from the administrator’s workstation
(192.168.1.105).

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 16 of 60

4.0 Troubleshooting Ethernet

The Ethernet layer enables a system to send packets to other systems on the same
network. Ethernet addresses are 48 bit addresses that are hard coded on individual NIC
cards. A system with multiple NIC cards has multiple Ethernet addresses.

Ethernet addresses are presented in octets and can be viewed using the –e switch in
tcpdump. The following example shows the Ethernet address of two nodes
communicating within a network (192.168.1.102 and 192.168.1.60):

tcpdump -e -q -ni eth0 port 22
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
16:49:53.193805 00:0c:29:a3:84:72 > 00:13:ce:d8:23:0c, IPv4, length 166:
192.168.1.60.ssh > 192.168.1.102.4121: tcp 112

16:49:53.194633 00:0c:29:a3:84:72 > 00:13:ce:d8:23:0c, IPv4, length 166:
192.168.1.60.ssh > 192.168.1.102.4121: tcp 112

16:49:53.195783 00:13:ce:d8:23:0c > 00:0c:29:a3:84:72, IPv4, length 60:
192.168.1.102.4121 > 192.168.1.60.ssh: tcp 0

Alternately, the tethereal utility provides the ability to print the entire Ethernet
frame in detail. The following example displays the Ethernet portion of a single packet:

tethereal -nVi eth0 -c 1
Running as user "root" and group "root". This could be dangerous.
Capturing on eth0

Frame 1 (134 bytes on wire, 134 bytes captured)
 Arrival Time: Jul 13, 2008 16:56:03.702211000
 [Time delta from previous captured frame: 0.000000000 seconds]
 [Time delta from previous displayed frame: 0.000000000 seconds]
 [Time since reference or first frame: 0.000000000 seconds]
 Frame Number: 1
 Frame Length: 134 bytes
 Capture Length: 134 bytes
 [Frame is marked: False]
 [Protocols in frame: eth:ip:tcp:ssh]
Ethernet II, Src: 00:13:ce:d8:23:0c (00:13:ce:d8:23:0c), Dst: 00:0c:29:a3:84:72
(00:0c:29:a3:84:72)
 Destination: 00:0c:29:a3:84:72 (00:0c:29:a3:84:72)
 Address: 00:0c:29:a3:84:72 (00:0c:29:a3:84:72)
 0 = IG bit: Individual address (unicast)
 0. = LG bit: Globally unique address (factory
default)
 Source: 00:13:ce:d8:23:0c (00:13:ce:d8:23:0c)
 Address: 00:13:ce:d8:23:0c (00:13:ce:d8:23:0c)
 0 = IG bit: Individual address (unicast)
 0. = LG bit: Globally unique address (factory
default)
 Type: IP (0x0800)

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 17 of 60

Most Ethernet traffic is either unicast or broadcast in nature. Many applications rely on
Ethernet broadcasting to publish required information. For example the SMB protocol
relies on broadcasts to publish information about specific file shares.

Broadcast Ethernet consists of all bits toggle on. In the following example, the
tethereal command captures just broadcast traffic and picks up an SMB enabled device
broadcasting over Ethernet:

tethereal –nVi eth0 broadcast
Frame 2 (244 bytes on wire, 244 bytes captured)
 Arrival Time: Jul 13, 2008 17:09:20.645712000
 [Time delta from previous captured frame: 3.805290000 seconds]
 [Time delta from previous displayed frame: 3.805290000 seconds]
 [Time since reference or first frame: 3.805290000 seconds]
 Frame Number: 2
 Frame Length: 244 bytes
 Capture Length: 244 bytes
 [Frame is marked: False]
 [Protocols in frame: eth:ip:udp:nbdgm:smb:browser]
Ethernet II, Src: 00:c0:02:de:89:ef (00:c0:02:de:89:ef), Dst: ff:ff:ff:ff:ff:ff
(ff:ff:ff:ff:ff:ff)
 Destination: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
 Address: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
 1 = IG bit: Group address
(multicast/broadcast)
 1. = LG bit: Locally administered address (this
is NOT the factory default)
 Source: 00:c0:02:de:89:ef (00:c0:02:de:89:ef)
 Address: 00:c0:02:de:89:ef (00:c0:02:de:89:ef)
 0 = IG bit: Individual address (unicast)
 0. = LG bit: Globally unique address (factory
default)
 Type: IP (0x0800)
 Trailer: 00

The first 3 sets of octets in an Ethernet address refer to the “Organizational Identifier”
or OID. The OID specifies the maker of the NIC card. The remaining 3 octets provide
the unique address of the NIC card.

When used on the local LAN, the nmap utility discerns both the vendor of the NIC card
(based on the OID). The following example probes the open UDP port from the previous
example:

nmap -sU -p U:138 192.168.1.200

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2008-07-13 17:44 CDT
Interesting ports on 192.168.1.200:
PORT STATE SERVICE
138/udp open|filtered netbios-dgm
MAC Address: 00:C0:02:DE:89:EF (Sercomm)

Nmap finished: 1 IP address (1 host up) scanned in 13.402 seconds

After some additional research on the Sercomm website, it appears that this NIC is part
of an OEM embedded print server.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 18 of 60

Alternatively, nmap supports a –O option that attempts to guess the OS. Embedded
devices rarely open enough ports for nmap to accurately detect the OS.

4.1 Ethernet and the ARP Protocol
In order for packets to locate a host on a network of leave a TCP/IP network,
they must have an IP address. Due to the reusable nature of IPv4 addresses, an
IP address may be assigned to multiple systems over time. As a result, the
“binding” of Ethernet addresses to IP addresses must be dynamic.

The Address Resolution Protocol (ARP) maintains the dynamic mapping of an
Ethernet address to an IP address. All TCP/IP based systems use the ARP
protocol to discover the latest mappings. The protocol stores these in a
dynamic kernel based cache.

Systems use ARP over broadcast Ethernet protocol to discover mappings. There
are 3 specific ways in which hosts use ARP to communicate:

• Solicited ARP – the most common form of ARP in which a node
sends an ARP request over broadcast Ethernet looking for the
Ethernet address of a specific node

• Gratuitous ARP – a node broadcasts it’s own mapping over the
Ethernet to inform systems that it has acquired a new IP address,
commonly used when an OS brings a NIC online after a reboot

• Proxy ARP – a node (usually a router) replies to ARP requests on
behalf of another node

The ARP protocol is unauthenticated and therefore open to abuse. Almost all “man-
in-the-middle” network attacks start with corrupting (poisoning) ARP caches.

All Linux systems provide the arp command to check network connectivity.
The arp command displays the Ethernet address to IP mappings for a system.
These mappings are dynamic and will update and flush over time.

The following example commands demonstrate how to check to the default
gateway for a system (192.168.1.1) and then to make sure an ARP entry
exists in the ARP table:

netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

arp -an
? (192.168.1.102) at 00:13:CE:D8:23:0C [ether] on eth0
? (192.168.1.1) at <incomplete> on eth0
? (192.168.1.220) at 00:90:27:F6:0E:DA [ether] on eth0

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 19 of 60

In the previous entry, it appears that the ARP entry for the router has been
flushed from the cache due to inactivity. The next time the host attempts to
communicate with the router, it will first send an ARP request.

The following example capture shows an ARP in action. When attempting to use
the ping command, the node (192.168.1.60) checks the ARP cache, realizes the
router (192.168.1.1) entry is not there, and then sends out an ARP request.

ping 192.168.1.1

tcpdump -e -q -ni eth0 arp
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

20:08:57.656098 00:0c:29:a3:84:72 > Broadcast, ARP, length 42: arp who-
has 192.168.1.1 tell 192.168.1.60

20:08:57.657638 00:06:25:77:63:8b > 00:0c:29:a3:84:72, ARP, length 60:
arp reply 192.168.1.1 is-at 00:06:25:77:63:8b

arp -an
? (192.168.1.102) at 00:13:CE:D8:23:0C [ether] on eth0
? (192.168.1.1) at 00:06:25:77:63:8B [ether] on eth0
? (192.168.1.220) at 00:90:27:F6:0E:DA [ether] on eth0

Alternately, the tethereal displays the entire header format of the ARP
request and reply.

tethereal -V -c 2 -ni eth0 arp
<snip>

Address Resolution Protocol (request)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: request (0x0001)
 Sender MAC address: 00:0c:29:a3:84:72 (00:0c:29:a3:84:72)
 Sender IP address: 192.168.1.60 (192.168.1.60)
 Target MAC address: 00:00:00:00:00:00 (00:00:00:00:00:00)
 Target IP address: 192.168.1.1 (192.168.1.1)
<snip>

Address Resolution Protocol (reply)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:06:25:77:63:8b (00:06:25:77:63:8b)
 Sender IP address: 192.168.1.1 (192.168.1.1)
 Target MAC address: 00:0c:29:a3:84:72 (00:0c:29:a3:84:72)
 Target IP address: 192.168.1.60 (192.168.1.60)

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 20 of 60

In the previous output, the ARP request is sent to the broadcast Ethernet. The
router, however, send the ARP reply back to the unicast address of the asking
host (192.168.1.60).

The ARP protocol was designed to handle different iterations of request/response.
The Opcode field defines the exact type of request. Many of the Opcodes have
been deprecated over the years.

4.1.0 Case Study – Router Down or Ignoring You?

The most common problem with Internet connectivity is access to the upstream
router. The quickest way to tell whether there it is an upstream connectivity
problem or an access control issue is to examine the underlying ARP protocol.

The following example demonstrates a router (192.168.1.1) that is completely
unavailable. The node (192.168.1.60) attempts a ping and receives a host
unreachable:

ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
From 192.168.1.60 icmp_seq=2 Destination Host Unreachable
From 192.168.1.60 icmp_seq=3 Destination Host Unreachable
From 192.168.1.60 icmp_seq=4 Destination Host Unreachable
From 192.168.1.60 icmp_seq=5 Destination Host Unreachable
From 192.168.1.60 icmp_seq=6 Destination Host Unreachable
From 192.168.1.60 icmp_seq=7 Destination Host Unreachable

The corresponding ARP requests go unanswered.

tcpdump -e -q -ni eth0 arp or icmp and host 192.168.1.60
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decodelistening on eth0, link-type EN10MB (Ethernet), capture size 96
bytes

20:33:23.758181 00:0c:29:a3:84:72 > Broadcast, ARP, length 42: arp who-
has 192.168.1.1 tell 192.168.1.60

20:33:25.759101 00:0c:29:a3:84:72 > Broadcast, ARP, length 42: arp who-
has 192.168.1.1 tell 192.168.1.60

20:33:26.758071 00:0c:29:a3:84:72 > Broadcast, ARP, length 42: arp who-
has 192.168.1.1 tell 192.168.1.60

In the next example, the router is blocking the IP address at the IP protocol.
The node receives the same reply from the router:

ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
From 192.168.1.60 icmp_seq=2 Destination Host Unreachable
From 192.168.1.60 icmp_seq=3 Destination Host Unreachable
From 192.168.1.60 icmp_seq=4 Destination Host Unreachable
From 192.168.1.60 icmp_seq=5 Destination Host Unreachable
From 192.168.1.60 icmp_seq=6 Destination Host Unreachable

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 21 of 60

From 192.168.1.60 icmp_seq=7 Destination Host Unreachable

However, the capture shows that the router replied to the ARP request, but is
not answering the ping requests:

tcpdump -q -ni eth0 arp or icmp and host 192.168.1.60
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decodelistening on eth0, link-type EN10MB (Ethernet), capture size 96
bytes

20:36:43.396475 arp who-has 192.168.1.1 tell 192.168.1.60
20:36:43.398559 arp reply 192.168.1.1 is-at 00:06:25:77:63:8b

20:36:43.398573 IP 192.168.1.60 > 192.168.1.1: ICMP echo request, id
13933, seq 1, length 64
20:36:44.395473 IP 192.168.1.60 > 192.168.1.1: ICMP echo request, id
13933, seq 2, length 64
20:36:45.395437 IP 192.168.1.60 > 192.168.1.1: ICMP echo request, id
13933, seq 3, length 64
20:36:46.396394 IP 192.168.1.60 > 192.168.1.1: ICMP echo request, id
13933, seq 4, length 64
20:36:47.397387 IP 192.168.1.60 > 192.168.1.1: ICMP echo request, id
13933, seq 5, length 64

4.1.1 Case Study – Duplicate IP Addresses on the Network

Another common problem on a large flat network is that two systems may have
the same IP address. In this situation, access to the intended system will be
sporadic based on which host replies first to the ARP request.

In the following example, a node performs a ping on a specific host
(192.168.1.102). The packet capture reveals two replies to the ARP request.

box:~# ping 192.168.1.102
PING 192.168.1.102 (192.168.1.102) 56(84) bytes of data.
64 bytes from 192.168.1.102: icmp_seq=1 ttl=128 time=5.83 ms

However, a capture of ARP traffic shows that two replies were sent to the
original request. The first reply was from the Windows host. The LINUX host's
entry came after.

box:~# tcpdump –q ni eth0 arp
tcpdump: verbose output suppressed, use v or vv for full protocol
decode listening on eth1, linktype EN10MB (Ethernet), capture
size 96 bytes
22:04:35.074216 arp who-has 192.168.1.102 tell 192.168.1.105
22:04:35.078448 arp reply 192.168.1.102 is-at 00:40:f4:83:48:24
22:04:35.079562 arp reply 192.168.1.102 is-at 00:0f:1f:17:ab:a7

A check of the ARP cache shows that the first ARP reply populates the cache.

box:~# arp -a
targus (192.168.1.220) at 00:02:55:74:41:1B [ether] on eth0
? (192.168.1.1) at 00:06:25:77:63:8B [ether] on eth0
? (192.168.1.102) at 00:40:f4:83:48:24 [ether] on eth0

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 22 of 60

An attempt to use ssh to connect to the remote host fails because the source
host is attempting to connect to a host that does not have SSH running (possibly
a Windows desktop).

box:~# ssh 192.168.1.102
OpenSSH_3.8.1p1 Debian8.
sarge.4, OpenSSL 0.9.7e 25 Oct 2004
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Connecting to 192.168.1.102 [192.168.1.102] port 22.

4.1.2 Another Host Stole Your IP

When a Linux based host brings a network interface online, it sends out 4
gratuitous ARP requests. It is both checking to make sure that no other host is
using its IP address and letting all nodes on the network know that it is online
and using the IP address.

In the following example, a Linux host attempts to plumb an interface with an
IP address of 192.168.1.64.

ifup eth0

tcpdump -q -ni eth0 arp
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96
bytes
20:54:47.181793 arp who-has 192.168.1.64 (Broadcast) tell 0.0.0.0
20:54:48.203058 arp who-has 192.168.1.64 (Broadcast) tell 0.0.0.0
20:54:48.959375 arp who-has 192.168.1.64 (Broadcast) tell 0.0.0.0
20:54:49.939827 arp who-has 192.168.1.64 (Broadcast) tell 0.0.0.0
20:54:50.981964 arp reply 192.168.1.64 is-at 00:0c:29:79:1e:90
20:54:52.502562 arp who-has 192.168.1.64 (Broadcast) tell
192.168.1.64

The host sends 4 ARP requests to the network checking to make sure no other
nodes have the IP address already. After no replies, the host sends both a
gratuitous reply to itself and a request back to the broadcast. Both ARP packets
are considered gratuitous because they include the IP/Ethernet address of the
host in both the source and destination fields and broadcast to the Ethernet.

A tethereal capture reveals both gratuitous ARP reply and requests. The first
example shows the host replying back to itself sent to the Ethernet broadcast:

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 23 of 60

tethereal –nVi eth0 arp

<snip>
Ethernet II, Src: 00:0c:29:79:1e:90 (00:0c:29:79:1e:90), Dst:
ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)

<snip>
Address Resolution Protocol (reply/gratuitous ARP)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: reply (0x0002)
 Sender MAC address: 00:0c:29:79:1e:90 (00:0c:29:79:1e:90)
 Sender IP address: 192.168.1.64 (192.168.1.64)
 Target MAC address: 00:0c:29:79:1e:90 (00:0c:29:79:1e:90)
 Target IP address: 192.168.1.64 (192.168.1.64)

The same goes for the gratuitous ARP request.

<snip>
Ethernet II, Src: 00:0c:29:79:1e:90 (00:0c:29:79:1e:90), Dst:
ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)

<snip>
Address Resolution Protocol (request/gratuitous ARP)
 Hardware type: Ethernet (0x0001)
 Protocol type: IP (0x0800)
 Hardware size: 6
 Protocol size: 4
 Opcode: request (0x0001)
 Sender MAC address: 00:0c:29:79:1e:90 (00:0c:29:79:1e:90)
 Sender IP address: 192.168.1.64 (192.168.1.64)
 Target MAC address: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff)
 Target IP address: 192.168.1.64 (192.168.1.64)

If a node already has an IP address, the exchange is much shorter. In the
following example, the Linux host sends out the ARP request and immediately
gets a reply that the IP address of 192.168.1.64 is already taken.

tcpdump -q -ni eth0 arp
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96
bytes
21:08:06.965101 arp who-has 192.168.1.64 (Broadcast) tell 0.0.0.0
21:08:06.965104 arp reply 192.168.1.64 is-at 00:0c:29:85:f5:6a

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 24 of 60

5.0 Troubleshooting IP Connectivity

For any system to be available on a network, it must have a valid IP address. This IP
address must be placed on the correct network with the appropriate routing entry to
traverse networks. In order to differentiate between the local IP network and external
networks, a node must apply the appropriate subnet mask. The subnet mask
determines both the network address and the broadcast address.

The following packet capture displays the format of an IP header:

Internet Protocol, Src: 192.168.1.200 (192.168.1.200), Dst: 192.168.1.220
(192.168.1.255)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 229
 Identification: 0x22ab (8875)
 Flags: 0x00
 0... = Reserved bit: Not set
 .0.. = Don't fragment: Not set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 30
 Protocol: UDP (0x11)
 Header checksum: 0xf445 [correct]
 [Good: True]
 [Bad : False]
 Source: 192.168.1.200 (192.168.1.200)
 Destination: 192.168.1.255 (192.168.1.220)

Important fields to point out in the IP header include:

• Source – the source IP address

• Destination – the destination IP address

• Flags – determine if the packet is fragmented

• Protocol – the next layer protocol

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 25 of 60

5.0.1 Case Study – Quick IP Routing Troubleshooting

When a client host on a LAN can't communicate with the outside world, it can
be one of 4 issues:

• no network connectivity

• misconfigured /etc/nsswitch.conf

• misconfigured or nonexistent /etc/resolv.conf for DNS

• misconfigured or wrong gateway information

The first 3 issues can be solved by viewing files and checking physical links.
There is no real way to tell if the gateway entry is truly routing packets. The
following example demonstrates how to monitor whether the gateway is
routing packets.

The client host is unable to reach a host on the Internet.

box:~# ping yahoo.com
ping: unknown host yahoo.com

The client has a gateway configured in the routing table. However, there is no
way to tell whether the gateway is actually routing.

box:~# netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 192.168.1.220 0.0.0.0 UG 0 0 0 eth1

The following packet capture is taken from the router. The packets are coming
from the source host of 192.168.1.105, but the interface is NOT showing the
return packet.

[root@router ~]# tcpdump –ni eth0 not port 22
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth0, linktype EN10MB (Ethernet), capture size 96 bytes

09:01:39.063347 IP 192.168.1.105.32770 > 4.2.2.2.domain: 49762+ A?
yahoo.com. (27)

09:01:44.075062 IP 192.168.1.105.32771 > 4.2.2.1.domain: 49762+ A?
yahoo.com. (27)

From the client prospective, the router is on the network as it replies to a
ping request.

box:~# ping 192.168.1.220
PING 192.168.1.220 (192.168.1.220) 56(84) bytes of data.
64 bytes from 192.168.1.220: icmp_seq=1 ttl=64 time=2.69 ms
64 bytes from 192.168.1.220: icmp_seq=2 ttl=64 time=2.95 ms

However, the client is not receiving any replies from it's DNS request. Packets
are going to the router, however they are getting dropped.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 26 of 60

box:~# tcpdump –ni eth1 not port 22
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth1, linktype EN10MB (Ethernet), capture size 96 bytes
09:10:06.367238 IP 192.168.1.105.32772 > 4.2.2.2.53: 49099+ A? yahoo.com.
(27)
09:10:11.381598 IP 192.168.1.105.32773 > 4.2.2.1.53: 49099+ A? yahoo.com.
(27)

5.1 The ICMP Protocol
The Internet Control Messaging Protocol (ICMP) was developed to test such
connectivity. There are a series of ICMP tests available to test if the remote IP
address is indeed reachable. The ICMP protocol consists of a TYPE and a CODE
within a TYPE.

The most common testing command is the ping command. This utility
leverages simple ICMP request (TYPE: 8 CODE: 0) and reply (TYPE: 0
CODE: 0) to see if the networking stack on the other system can process and
reply to a packet.

The ICMP header is extremely simple. The following example capture displays
the ICMP TYPE and CODE of a ping exchange between two hosts
192.168.1.60 and 192.168.1.220:

ping 192.168.1.220
tethereal –nVi eth0 icmp
<snip>

Source: 192.168.1.220 (192.168.1.220)
 Destination: 192.168.1.60 (192.168.1.60)

<snip>

Internet Control Message Protocol
 Type: 8 (Echo (ping) request)
 Code: 0 ()
 Checksum: 0x7590 [correct]
 Identifier: 0xeb4f
 Sequence number: 2 (0x0002)
 Data (56 bytes)

<snip>
Source: 192.168.1.60 (192.168.1.60)
 Destination: 192.168.1.220 (192.168.1.220)

<snip>
Internet Control Message Protocol
 Type: 0 (Echo (ping) reply)
 Code: 0 ()
 Checksum: 0x7d90 [correct]
 Identifier: 0xeb4f
 Sequence number: 2 (0x0002)
 Data (56 bytes)

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 27 of 60

5.2.0 Case Study – Misconfigured Broadcast Address 1

The broadcast address is often overlooked when determining network
problems. Some network communications rely on a properly configured
broadcast address including: NetBios (SMB), NTP, RIPv1, and ICMP Broadcast
pings.

The following example demonstrates a standard ICMP broadcast ping. All hosts
on the correct broadcast address reply to the broadcast ping:

box:~# ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:06:53:E4:8D:B8
inet addr:192.168.1.105 Bcast:192.168.1.255 Mask:255.255.255.0

<snip>

box:~# ping –b 192.168.1.255
WARNING: pinging broadcast address
PING 192.168.1.255 (192.168.1.255) 56(84) bytes of data.
64 bytes from 192.168.1.105: icmp_seq=1 ttl=64 time=0.052 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=150 time=3.54 ms (DUP!)
64 bytes from 192.168.1.220: icmp_seq=1 ttl=64 time=4.43 ms
(DUP!)

If the host does not have the correct broadcast address, other hosts will not
reply to the broadcast ping requests. This is due to the fact that when the
hosts on the network see the broadcast request, they will treat it as if an host
was attempting to contact an individual host.

The following output shows that the system 192.168.1.105 has a class A
subnet (192.0.0.0) although the network is class C (192.168.1.0).

box:~# ifconfig -eth1
eth1 Link encap:Ethernet HWaddr 00:06:53:E4:8D:B8
inet addr:192.168.1.105 Bcast:192.255.255.255 Mask:255.0.0.0

A broadcast ping returns no replies from the network.

box:~# ping –b 192.168.1.255
PING 192.168.1.255 (192.168.1.255) 56(84) bytes of data.
From 192.168.1.105 icmp_seq=1 Destination Host Unreachable

A packet capture further confirms the problem. The correct broadcast is
192.168.1.255, however since the source host's broadcast is
192.255.255.255, the source host is mistakenly trying to ARP for
192.168.1.255, thinking it is a real host. The source host will never receive
a valid ARP reply as no host on the network can have a .255 in its last octet.

box:~# tcpdump -ni eth1
tcpdump: verbose output suppressed, use –v or –vv for full
protocol decode listening on eth1, linktype EN10MB (Ethernet),
capture size 96 bytes
22:31:01.512750 arp who-has 192.168.1.255 tell 192.168.1.105

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 28 of 60

22:31:02.512665 arp who-has 192.168.1.255 tell 192.168.1.105

5.2.1 Case Study – Misconfigured Broadcast Address 2

The following case study demonstrates how a misconfigured broadcast address
affects NetBios discovery. In this case, a Linux file server (owasso-01) serves
as an SMB based file server using Samba for a Windows network. However, the
file server has an incorrect broadcast address:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:90:27:F6:0E:DA
 inet addr:192.168.1.220 Bcast:192.255.255.255
Mask:255.0.0.0

The address should be a class A (192.168.1.0), but it is configured to be
192.0.0.0.

The file server owasso-01 (192.168.1.220) sends NetBios name registration
packets on the broadcast address:

tethereal –ni eth0 broadcast
<snip>

49 21.032326 192.168.1.220 -> 192.255.255.255 NBNS Registration NB OWASSO-01<20>
50 21.032327 192.168.1.220 -> 192.255.255.255 NBNS Registration NB OWASSO-01<03>
51 21.032328 192.168.1.220 -> 192.255.255.255 NBNS Registration NB OWASSO-01<00>

<snip>

A Windows end user then attempts to search for the Owasso-01 system in the
Windows run function which returns a “Network Path Not Found.”

\\owasso-01

The network path was not found.

The tethereal output shows that the Windows desktop (192.168.1.103)
sending out name queries to the broadcast address on a different subnet (the
correct subnet):

54 22.538547 192.168.1.103 -> 192.168.1.255 NBNS Name query NB OWASSO-01<00>
55 22.542016 192.168.1.103 -> 192.168.1.255 NBNS Name query NB OWASSO-01<20>
56 23.004235 192.168.1.103 -> 192.168.1.255 NBNS Name query NB OWASSO-01<00>
57 23.008259 192.168.1.103 -> 192.168.1.255 NBNS Name query NB OWASSO-01<20>

5.2.2 Case Study – Stubborn DHCP Client

The DHCP protocol is critical to enabling access to corporate networks. The
DHCP protocol relies heavily on both the ARP and Ethernet broadcast to
dynamically assign IP addresses to client systems. The following packet capture
walks through the process of a DHCP session between a client host and a DHCP
server.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 29 of 60

The DHCP protocol runs UDP over ports 67 and 68, but relies primarily on Ethernet
and IP broadcasting (unless used in relay mode).

The first DHCP packet sent by the client goes to the Ethernet broadcast
address. This is called the Discover packet. Since the client does not have an
IP address, it uses 0.0.0.0 as a place holder.

14:52:59.602105 IP 0.0.0.0.bootpc > 255.255.255.255.bootps:
BOOTP/DHCP, Request from 00:0c:29:79:1e:90 (oui Unknown), length
3000

The DHCP selects the next IP address (192.168.1.104) in the pool and sends
out an ARP to make sure that address is not taken:

4.475738 00:06:25:77:63:8b > ff:ff:ff:ff:ff:ff ARP Who-has 192.168.1.104?
Tell 192.168.1.1

If the DHCP server does not get a reply, it then sends an OFFER to the DHCP
client over the broadcast address.

14:53:00.000569 IP 192.168.1.103.bootps > 192.168.1.203.bootpc:
BOOTP/DHCP, Reply, length 300

The DHCP server confirms that the client has received the IP address by
sending an ARP request with the new mapping and an ICMP ping.

14:53:01.661405 arp who-has 192.168.1.203 tell 192.168.1.103
14:53:01.701045 arp reply 192.168.1.203 is-at 00:0c:29:79:1e:90 (oui
Unknown)
14:53:01.701059 IP 192.168.1.103 > 192.168.1.203: ICMP echo request, id
14401, seq 0, length 28
14:53:01.702118 IP 192.168.1.203 > 192.168.1.103: ICMP echo reply, id
14401, seq 0, length 28

In the following case study, a Windows XP system reports a “Limited or no
Connectivity” warning when an end user tries to boot a laptop on a DHCP
enabled network. The following packet capture shows that the DHCP server is
indeed still running and responding to requests. It appears that the client
simply will not accept an address:

tcpdump –ni eth0 port 67 and port 68

15:12:44.508899 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP,
Request from 00:02:a5:df:8b:79, length 300

15:12:45.000571 IP 192.168.1.103.bootps > 192.168.1.204.bootpc:
BOOTP/DHCP, Reply, length 300

15:12:48.998491 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP,
Request from 00:02:a5:df:8b:79, length 300

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 30 of 60

15:12:48.998881 IP 192.168.1.103.bootps > 192.168.1.204.bootpc:
BOOTP/DHCP, Reply, length 300

15:12:56.998832 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP,
Request from 00:02:a5:df:8b:79, length 300

15:12:56.999405 IP 192.168.1.103.bootps > 192.168.1.204.bootpc:
BOOTP/DHCP, Reply, length 300

15:12:57.000764 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP,
Request from 00:02:a5:df:8b:79, length 305

15:12:57.197904 IP 192.168.1.103.bootps > 192.168.1.204.bootpc:
BOOTP/DHCP, Reply, length 300

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 31 of 60

6.0 Troubleshooting TCP Connectivity
The TCP protocol binds an application service to a port. Whether or not that binding is
available is determined by TCP. The protocol provides two way communications for
applications between hosts on a network in the 3 following ways:

• Connection Oriented – uses series of flags to maintain the state of
the connection

• Reliability – uses a packet sequencing algorithm to ensure both
sides of a connection receive all packets

• Stateful – uses “windows” to optimize buffer sizes

When an application binds to a port, network applications may connect to the port.
The nmap utility ships provides a rich set of tools to determine whether a port is open
or not. The nmap example demonstrates how to check if port 25 is available on a
remote system:

nmap -p 25 192.168.1.220

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-10-
05 10:46 PDT
Interesting ports on 192.168.1.244:
PORT STATE SERVICE
25/tcp open smtp
MAC Address: 00:0C:29:9E:7F:84 (3com)

Nmap finished: 1 IP address (1 host up) scanned in 0.650 seconds

The important field to observe is the STATE field. There are three possible states for a
given port:

• open – The port is open and accepting connections.

• closed – The port is certified closed because the remote server
sent an RFC compliant reset.

• filtered – The port is probably firewalled because the remote
server is available, but sent no reply.

The UDP protocol is the stateless counterpart to TCP. Due to its simplistic nature,
the UDP protocol is not covered in this section.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 32 of 60

6.1 TCP Connection Oriented
Each one of the TCP/IP flags specifies the state of the connection between two
end nodes. These flags are embedded in the TCP/IP packet headers. They are a
series of bits. A flag is set when the bit is turned on and not set when it is
turned off. The following output from a verbose packet capture shows the
TCP/IP packet headers:

tethereal –nVi eth0

<snip>

Transmission Control Protocol, Src Port: 22 (22), Dst Port: 4095 (4095),
Seq: 10336, Ack: 0, Len: 1260
 Source port: 22 (22)
 Destination port: 4095 (4095)
 Sequence number: 10336 (relative sequence number)
 Next sequence number: 11596 (relative sequence number)
 Acknowledgement number: 0 (relative ack number)
 Header length: 20 bytes
 Flags: 0x0010 (ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 0... = Push: Not set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 15232
 Checksum: 0x4c3e [correct]

The flags are split into three logical groups:

• Opening a connection – Syn/Acknowledgement

• Maintaining a connection – Push/Ack

• Closing a connection – Fin/Ack/Reset

6.1.0 Opening a Connection

The SYN and ACK flags are responsible for opening a TCP/IP connection. In
order for these flags to open a connection, they must initiate a “3 Way
Handshake”. The flags are passed in the following steps:

1. The source host sends a packet with the SYN flag set.

2. The destination host replies to that packet with an ACK to the source
host SYN and additionally sends its own packet with a SYN flag.

3. The source host receives the ACK to its SYN and the SYN from the
destination host. The source then replies back to the destination with
an ACK flag to the destination’s SYN flag.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 33 of 60

The following tcpdump output displays a source (hosta) and destination (hostb)
initiating a connection on the SMTP port:

tetheral port 25
hosta -> hostb TCP 1445 > smtp [SYN] Seq=0 Len=0 MSS=1260
hostb -> hosta TCP smtp > 1445 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0
MSS=1460
hosta -> hostb TCP 1446 > smtp [ACK] Seq=1 Ack=1 Win=17640 Len=0

6.1.1 Closing a Connection

The TCP protocol closes a connection in two ways: either through clean
(FIN/ACK) or through dirty (RST) ways. The clean version enables both hosts to
agree to close a connection through a series of 4 packets.

The following example demonstrates a clean closure of a connection:

tethereal –nVi eth0 port 80

<snip>

42.303610 192.168.1.60 -> 204.179.240.224 TCP 3292 > 80 [FIN, ACK] Seq=125
Ack=42280 Win=63760 Len=0 TSV=36026120 TSER=534105456

42.348614 204.179.240.224 -> 192.168.1.60 TCP 80 > 3292 [ACK] Seq=42280 Ack=126
Win=33180 Len=0 TSV=534105463 TSER=36026120

42.349215 204.179.240.224 -> 192.168.1.60 TCP 80 > 3292 [FIN, ACK] Seq=42280
Ack=126 Win=33180 Len=0 TSV=534105463 TSER=36026120

42.349238 192.168.1.60 -> 204.179.240.224 TCP 3292 > 80 [ACK] Seq=126 Ack=42281
Win=63760 Len=0 TSV=36026166 TSER=534105463

In the previous output, both sides of the connection send their own FIN packet and
an ACK of the other’s, closing the connection mutually.

The following demonstrates a dirty closure of a connection:

17.478174 192.168.1.220 -> 192.168.1.60 TCP 47252 > 25 [RST]
Seq=35 Win=0 Len=0

6.1.3 Case Study – Service Not Running

There are multiple reasons why a remote server may not respond to a client
request. A common mistake is to assume that since a host is available at the IP
level, it does not mean that it is available at the TCP level.

The host is available at the IP level as per the ping replies.

box:~# ping 192.168.1.220
PING 192.168.1.220 (192.168.1.220) 56(84) bytes of data.
64 bytes from 192.168.1.220: icmp_seq=1 ttl=64 time=2.71 ms
64 bytes from 192.168.1.220: icmp_seq=2 ttl=64 time=2.64 ms

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 34 of 60

The SMTP service is not available to the client.

box:~# telnet 192.168.1.220 25
Trying 192.168.1.220...
telnet: Unable to connect to remote host: Connection refused

Taking a look at the packet capture, it is clear that the mail service is not
running. Standard TCP replies to closed ports is to send a RST flag to the
source host.

box:~# tcpdump –ni eth1 port 25
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth1, linktype EN10MB (Ethernet), capture size 96 bytes

09:18:12.495679 IP 192.168.1.105.32780 > 192.168.1.220.25: S
2557844136:2557844136(0) win 5840 <mss 1460,sackOK,timestamp 1643931
0,nop,wscale 0>

09:18:12.498346 IP 192.168.1.220.25 > 192.168.1.105.32780: R 0:0(0) ack
2557844137 win 0

6.1.4 Case Study – Service Denying Access

Some applications provide host based access control. TCP Wrappers have been
around for quite some time. Their purpose is to do host based access control.
Unlike closed ports, the port to the server is open. Upon connection to the
server, a check is made to the /etc/hosts.allow and /etc/hosts.deny
files. If the client is allowed to connect, then a standard TCP connection is
made. If not, the server sends a TCP reset to the client. The following is an
example of a TCP wrapped ssh service.

box:~# ssh 192.168.1.220
ssh_exchange_identification: Connection closed by remote host

The ssh server initiates a 3 way handshake with the client. Upon checking the
deny status, the server then sends a clean termination of the connection.

box:~# tcpdump -ni eth1 port 22
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth1, linktype EN10MB (Ethernet), capture size 96 bytes

10:24:44.508208 IP 192.168.1.105.32786 > 192.168.1.220.22: S
2304868053:2304868053(0) win 5840 <mss 1460,sackOK,timestamp 2043132
0,nop,wscale 0>

10:24:44.510770 IP 192.168.1.220.22 > 192.168.1.105.32786: S
762146323:762146323(0) ack 2304868054 win 5792 <mss 1460,sackOK,timestamp
44455276 2043132,nop,wscale 2>

10:24:44.510807 IP 192.168.1.105.32786 > 192.168.1.220.22: . ack 1 win
5840 <nop,nop,timestamp 2043132 44455276>

10:24:49.526296 IP 192.168.1.220.22 > 192.168.1.105.32786: F 1:1(0) ack 1
win 1448 <nop,nop,timestamp 44460292 2043132>

10:24:49.526647 IP 192.168.1.105.32786 > 192.168.1.220.22: F 1:1(0) ack 2
win 5840 <nop,nop,timestamp 2043634 44460292>

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 35 of 60

10:24:49.529124 IP 192.168.1.220.22 > 192.168.1.105.32786: . ack 2 win
1448 <nop,nop,timestamp 44460295 2043634>

6.1.5 Case Study – Firewall Blocking Access

When a port is blocked by a packet filter (IPTables or IPFilter for example), it
may be open but filtered at the IP level. In this case, the client will send
multiple SYN packets to the server and the server will not respond simply
because the packet has been dropped by the filter.

box:~# telnet 192.168.1.220 25
Trying 192.168.1.220...
telnet: Unable to connect to remote host: No route to host

A look at the packet capture shows that the client sent 3 TCP SYN packets to
the smtp port (25) that were simply dropped by the server and not replied to in
the client.

box:~# tcpdump –ni eth1 port 25
tcpdump: verbose output suppressed, use v or vv for full protocol decode
listening on eth1, linktype EN10MB (Ethernet), capture size 96 bytes

10:35:02.302120 IP 192.168.1.105.32787 > 192.168.1.220.25: S
2934062463:2934062463(0) win 5840 <mss 1460,sackOK,timestamp 2104912
0,nop,wscale 0>

10:35:13.847729 IP 192.168.1.105.32788 > 192.168.1.220.25: S
2951328215:2951328215(0) win 5840 <mss 1460,sackOK,timestamp 2106066
0,nop,wscale 0>

10:35:19.518837 IP 192.168.1.105.32789 > 192.168.1.220.25: S
2947681121:2947681121(0) win 5840 <mss 1460,sackOK,timestamp 2106633
0,nop,wscale 0>

6.1.6 Case Study – Rude SMTP Server

In the following example, a client (192.168.1.220) has successfully
connected to an SMTP server and has started an SMTP transaction. Halfway
through that transaction, the server (192.168.1.60) sends a RESET to kill the
connection.

tethereal –ni eth0 port 25
8.160142 192.168.1.220 -> 192.168.1.60 SMTP Command: helo 0
8.160215 192.168.1.60 -> 192.168.1.220 TCP 25 > 47252 [ACK] Seq=40 Ack=9
Win=5792 Len=0 TSV=36961862 TSER=478843278
8.161051 192.168.1.60 -> 192.168.1.220 SMTP Response: 250 ng-
server.localhost
8.162012 192.168.1.220 -> 192.168.1.60 TCP 47252 > 25 [ACK] Seq=9 Ack=65
Win=5840 Len=0 TSV=478843282 TSER=36961863
17.455709 192.168.1.220 -> 192.168.1.60 SMTP Command: mail from:
foo@yahoo.com
17.456097 192.168.1.60 -> 192.168.1.220 TCP 25 > 47252 [RST] Seq=65 Win=0
Len=0

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 36 of 60

6.2 Connection Oriented - State Transitions
As an alternate to monitoring live connections, a network administrator may
also use state transitions as a method of troubleshooting a connection.
Throughout the entire connection, TCP states change as flags pass between two
hosts on a connection.

The following states are relevant to connection troubleshooting:

• LISTEN – A network service on the local host is bound to a port
and listening for inbound SYN connections (StrongMail MTA server
on port 25 or StrongMail IQMP Server on port 9010, for example).

• SYN_SENT – The source host has attempted to initiate a
connection with a remote host by sending the initial SYN packet,
but the destination host has yet to send the ACK (StrongMail IQMP
server attempts to connect to receiving MX and does not receive
ACK, for example).

• SYN_RCVD – A remote host has sent the local server a SYN and the
server has sent an ACK. However, the remote host has not sent the
3rd ack.

• ESTABLISHED – The source and destination hosts have
successfully completed a three-way handshake (StrongMail IQMP
server makes successful connection to MX server).

• CLOSE_WAIT – The local host has sent a FIN/ACK sequence to
close its end, but the remote host has not sent its FIN/ACK.

The netstat provides flag information on the state of a connection between
two hosts. By using netstat, an administrator may determine the state of a
connection by interpreting the netstat “STATE” column. In the following
example, a netstat command displays that the postfix MTA is bound on
port 25:

netstat -t -anp | egrep '25|State' | egrep 'State|LISTEN'
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 1978/postfix

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 37 of 60

6.2.1 Case Study – Remote Host is Ignoring You

In the following example, a corporate MTA is attempting to send email to the
yahoo.com domain. The netstat command shows that the receiving MX server
is rather busy, responding to some connections and timing out othere. Some
connections sit in the ESTABLISHED state while others sit in SYN_SENT

netstat –t –a | egrep ‘State|yahoo.com’
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 1 example.com:47390 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:47389 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:47404 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:46677 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:46680 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:46691 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:46832 mx1.yahoo.com:25 ESTABLISHED
tcp 0 1 example.com:46833 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:46634 mx1.yahoo.com:25 SYN_SENT
tcp 0 1 example.com:46901 mx1.yahoo.com:25 ESTABLISHED

6.2.2 Case Study – Network Performance or Denial of Service

In the following example, a local web server seems to be performing slowly.
The netstat output reveals that there are multiple half open connections in the
SYN_RCVD state. This means that the web server has responded to the ACK of
the SYN/ACK, but has not received the final ACK from the remote host. This
situation could either mean that the upstream routers are dropping packets or
a malicious attacker is attempting to DoS the system.

netstat -t -an | egrep 'State | SYN_RECV'
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.1.103:80 151.20.250.144:6743 SYN_RECV
tcp 0 0 192.168.1.103:80 139.60.115.170:2687 SYN_RECV
tcp 0 0 192.168.1.103:80 60.249.54.227:24917 SYN_RECV
tcp 0 0 192.168.1.103:80 218.77.61.69:48692 SYN_RECV
tcp 0 0 192.168.1.103:80 97.133.21.125:21599 SYN_RECV
tcp 0 0 192.168.1.103:80 44.53.252.60:26569 SYN_RECV
tcp 0 0 192.168.1.103:80 244.64.87.40:42981 SYN_RECV
tcp 0 0 192.168.1.103:80 180.108.72.188:39119 SYN_RECV
tcp 0 0 192.168.1.103:80 157.75.153.0:59138 SYN_RECV

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 38 of 60

6.3 TCP Reliability and Statefulness
In addition to flag, the TCP protocol uses a packet sequencing and
acknowledgement algorithm (reliability) and a window sized buffer (state) to
determine how many packets each side of the connection can handle before
acknowledgement.

The following example tcpdump output displays both the packet sequencing
and window advertisement (win).

16:15:58.342003 IP 192.168.1.60.ssh > 192.168.1.102.cecsvc: P
58032:58176(144) ack 641 win 19584

The TCP sequencing algorithm enables hosts to receive and assemble TCP
packets in or out of order. In addition to this, the algorithm enables both sides
of the connection to determine which packets are lost and selectively
retransmit those packets (Selective Acknowledgement).

The TCP window buffer tells a receiving host how many packets that can be
processed on its buffer. Once the client reaches the window buffer limit, it will
send and acknowledgement to the sending host to continue the next round of
TCP packets. Hosts constantly adjust TCP window sizes depending on network
latency and system load.

Troubleshooting sequencing and window sizes is rather difficult using libpcap based
protocols (including utilities like WireShark). As a result, this paper uses the utility
tcptrace as a way to summarize information about a connection. This utility is
described in section 8 of this paper.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 39 of 60

7.0 Introducing Network Monitoring
Out of all the subsyetms to monitor, networking is the hardest to monitor. This is due
primarily to the fact that the network is abstract. There are many factors that are
beyond a system’s control when it comes to monitoring and performance. These factors
include latency, collisions, congestion and packet corruption to name a few.

This section focuses on how to check the performance of Ethernet, IP and TCP.

7.1 Ethernet Configuration Settings
Unless explicitly changed, all Ethernet networks are auto negotiated for speed.
The benefit of this is largely historical when there were multiple devices on a
network that could be different speeds and duplexes.

Most enterprise Ethernet networks run at either 100 or 1000BaseTX. Use
ethtool to ensure that a specific system is synced at this speed.

In the following example, a system with a 100BaseTX card is running auto
negotiated in 10BaseT.

ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 10Mb/s
 Duplex: Half
 Port: MII
 PHYAD: 32
 Transceiver: internal
 Auto-negotiation: on
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 Link detected: yes

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 40 of 60

The following example demonstrates how to force this card into 100BaseTX:

ethtool -s eth0 speed 100 duplex full autoneg off
ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: No
 Speed: 100Mb/s
 Duplex: Full
 Port: MII
 PHYAD: 32
 Transceiver: internal
 Auto-negotiation: off
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 Link detected: yes

7.2 Monitoring Network Throughput
Just because an interface is now synchronized does not mean it is still having
bandwidth problems. It is impossible to control or tune the switches, wires,
and routers that sit in between two host systems. The best way to test network
throughput is to send traffic between two systems and measure statistics like
latency and speed.

7.2.0 Using iptraf

The iptraf utility (http://iptraf.seul.org) provides a dashboard of
throughput per Ethernet interface.

iptraf –d eth0

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 41 of 60

Figure 1: Monitoring for Network Throughput

The previous output shows that the system tested above is sending traffic at a
rate of 61 mbps (7.65 megabytes). This is rather slow for a 100 mbps network.

7.2.1 Using netperf

Unlike iptraf which is a passive interface that monitors traffic, the netperf
utility enables a system administrator to perform controlled tests of network
throughput. This is extremely helpful in determining the throughput from a
client workstation to a heavily utilized server such as a file or web server. The
netperf utility runs in a client/server mode.

To perform a basic controlled throughput test, the netperf server must be
running on the server system:

server# netserver
Starting netserver at port 12865
Starting netserver at hostname 0.0.0.0 port 12865 and family AF_UNSPEC

There are multiple tests that the netperf utility may perform. The most basic
test is a standard throughput test. The following test initiated from the client
performs a 30 second test of TCP based throughput:

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 42 of 60

client# netperf -H 192.168.1.230 -l 30
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
192.168.1.230 (192.168.1.230) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 87380 16384 16384 30.02 89.46

The output shows that that the throughput on the network is around 89 mbps.
This is exceptional performance for a 100 mbps network.

Another useful test using netperf monitors the amount of TCP request and
response transactions taking place per second. The test accomplishes this by
creating a single TCP connection and then sending multiple request/response
sequences over that connection (ack packets back and forth with a byte size of
1). This behavior is similar to applications such as RDBMS executing multiple
transactions or mail servers piping multiple messages over one connection.

The following example simulates TCP request/response over the duration of 30
seconds:

client# netperf -t TCP_RR -H 192.168.1.230 -l 30
TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET
to 192.168.1.230 (192.168.1.230) port 0 AF_INET
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 30.00 4453.80
16384 87380

In the previous output, the network supported a transaction rate of 4453
psh/ack per second using 1 byte payloads. This is somewhat unrealistic due to
the fact that most requests, especially responses, are greater than 1 byte.

In a more realistic example, a netperf uses a default size of 2K for requests
and 32K for responses:

client# netperf -t TCP_RR -H 192.168.1.230 -l 30 -- -r 2048,32768
TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
192.168.1.230 (192.168.1.230) port 0 AF_INET
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 87380 2048 32768 30.00 222.37
16384 87380

The transaction rate reduces significantly to 222 transactions per second.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 43 of 60

7.3 Monitoring for Error Conditions
The most common kind of error condition checked is for is packet collisions.
Most enterprise networks are in a switched environment, practically
eliminating collisions. However, with the increased usage of networked based
services, there are other conditions that may arise. These conditions include
dropped frames, backlogged buffers, and overutilized NIC cards.

Under extreme network loads, the sar command provides a report on all
possible error types on a network.

sar -n FULL 5 100
Linux 2.6.9-55.ELsmp (sapulpa) 06/23/2007

11:44:32 AM IFACE rxpck/s txpck/s rxbyt/s txbyt/s rxcmp/s txcmp/s rxmcst/s
11:44:37 AM lo 6.00 6.00 424.40 424.40 0.00 0.00 0.00
11:44:37 AM eth0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:44:37 AM sit0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11:44:32 AM IFACE rxerr/s txerr/s coll/s rxdrop/s txdrop/s txcarr/s rxfram/s rxfifo/s txfifo/s
11:44:37 AM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:44:37 AM eth0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:44:37 AM sit0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11:44:32 AM totsck tcpsck udpsck rawsck ip-frag
11:44:37 AM 297 79 8 0 0

Table 3: Types of Network Errors

Field Description
rxerr/s rate of receive errors
tcerr/s rate of transmit errors
coll/s rate of collisions
rxdrop/s received frames dropped due to kernel buffer shortage

txdrop/s
trasnmitted frames dropped due to kernel buffer
shortage

txcarr/s carrier errors
rxfram/s frame alignement errors
rxfifo/s receiving FIFO errors
tcfifo/s trasmitted FIFO errors

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 44 of 60

7.4 Monitoring Traffic Types
Certain systems are designed to serve different traffic. For instance, a web
server serves traffic over port 80 and a mail server over port 25. The iptraf
tool displays the highest volume of traffic per TCP port.

Figure 2: Monitoring TCP Traffic per Port

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 45 of 60

7.5 Displaying Connection Statistics tcptrace

The tcptrace utility provides detailed TCP based information about specific
connections. The utility uses libpcap based files to perform and an analysis of
specific TCP sessions. The utility provides information that is sometimes
difficult to catch in a TCP stream. This information includes:

• TCP Retransmissions – the amount of packets that needed to be
sent again and the total data size

• TCP Window Sizes – identify slow connections with small window
sizes

• Total throughput of the connection

• Connection duration

7.5.0 Case Study – Using tcptrace

The tcptrace utility may be available in some Linux software repositories.
This paper uses a precompiled package from the following website:
http://dag.wieers.com/rpm/packages/tcptrace. The tcptrace command
takes a source libpcap based file as an input. Without any options, the utility
lists all of the unique connections captured in the file.

The following example uses a libpcap based input file called bigstuff:

tcptrace bigstuff
1 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:01.634065, 89413 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
 1: 192.168.1.60:pcanywherestat - 192.168.1.102:2571 (a2b) 404> 450<
 2: 192.168.1.60:3356 - ftp.strongmail.net:21 (c2d) 35> 21<
 3: 192.168.1.60:3825 - ftp.strongmail.net:65023 (e2f) 5> 4<
(complete)
 4: 192.168.1.102:1339 - 205.188.8.194:5190 (g2h) 6> 6<
 5: 192.168.1.102:1490 - cs127.msg.mud.yahoo.com:5050 (i2j) 5> 5<
 6: py-in-f111.google.com:993 - 192.168.1.102:3785 (k2l) 13> 14<

<snip>

In the previous output, each connection has a number associated with it and
the source and destination host. The most common option to tcptrace is the
–l and –o option which provide detailed statistics on a specific connection.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 46 of 60

The following example lists all of the statistics for connection #16 in the
bigstuff file:

tcptrace -l -o1 bigstuff
1 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:00.529361, 276008 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
32 TCP connections traced:
TCP connection 1:
 host a: 192.168.1.60:pcanywherestat
 host b: 192.168.1.102:2571
 complete conn: no (SYNs: 0) (FINs: 0)
 first packet: Sun Jul 20 15:58:05.472983 2008
 last packet: Sun Jul 20 16:00:04.564716 2008
 elapsed time: 0:01:59.091733
 total packets: 854
 filename: bigstuff
 a->b: b->a:
 total packets: 404 total packets: 450
 ack pkts sent: 404 ack pkts sent: 450
 pure acks sent: 13 pure acks sent: 320
 sack pkts sent: 0 sack pkts sent: 0
 dsack pkts sent: 0 dsack pkts sent: 0
 max sack blks/ack: 0 max sack blks/ack: 0
 unique bytes sent: 52608 unique bytes sent: 10624
 actual data pkts: 391 actual data pkts: 130
 actual data bytes: 52608 actual data bytes: 10624
 rexmt data pkts: 0 rexmt data pkts: 0
 rexmt data bytes: 0 rexmt data bytes: 0
 zwnd probe pkts: 0 zwnd probe pkts: 0
 zwnd probe bytes: 0 zwnd probe bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 391 pushed data pkts: 130
 SYN/FIN pkts sent: 0/0 SYN/FIN pkts sent: 0/0
 urgent data pkts: 0 pkts urgent data pkts: 0 pkts
 urgent data bytes: 0 bytes urgent data bytes: 0 bytes
 mss requested: 0 bytes mss requested: 0 bytes
 max segm size: 560 bytes max segm size: 176 bytes
 min segm size: 48 bytes min segm size: 80 bytes
 avg segm size: 134 bytes avg segm size: 81 bytes
 max win adv: 19584 bytes max win adv: 65535 bytes
 min win adv: 19584 bytes min win adv: 64287 bytes
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 19584 bytes avg win adv: 64949 bytes
 initial window: 160 bytes initial window: 0 bytes
 initial window: 2 pkts initial window: 0 pkts
 ttl stream length: NA ttl stream length: NA
 missed data: NA missed data: NA
 truncated data: 36186 bytes truncated data: 5164 bytes
 truncated packets: 391 pkts truncated packets: 130 pkts
 data xmit time: 119.092 secs data xmit time: 116.954 secs
 idletime max: 441267.1 ms idletime max: 441506.3 ms
 throughput: 442 Bps throughput: 89 Bps

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 47 of 60

7.5.1 Case Study – Calculating Retransmission Percentages

It is almost impossible to identify which connections have severe enough
retransmission problems that require analysis. The tcptrace utility has the
ability to use filters and Boolean expressions to locate problem connections. On
a saturated network with multiple connections, it is possible that all
connections may experience retransmissions. The key is to locate which ones
are experiencing the most.

In the following example, the tcptrace command uses a filter to locate
connections that retransmitted more than 100 segments:

tcptrace -f'rexmit_segs>100' bigstuff
Output filter: ((c_rexmit_segs>100)OR(s_rexmit_segs>100))
1 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:00.687788, 212431 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
 16: ftp.strongmail.net:65014 - 192.168.1.60:2158 (ae2af) 18695> 9817<

In the previous output, connection #16 experienced had more than 100
retransmissions. From here, the tcptrace utility provides statistics on just that
connection:

tcptrace -l -o16 bigstuff
 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:01.355964, 107752 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
32 TCP connections traced:
================================
TCP connection 16:
 host ae: ftp.strongmail.net:65014
 host af: 192.168.1.60:2158
 complete conn: no (SYNs: 0) (FINs: 1)
 first packet: Sun Jul 20 16:04:33.257606 2008
 last packet: Sun Jul 20 16:07:22.317987 2008
 elapsed time: 0:02:49.060381
 total packets: 28512
 filename: bigstuff
 ae->af: af->ae:

<snip>

 unique bytes sent: 25534744 unique bytes sent: 0
 actual data pkts: 18695 actual data pkts: 0
 actual data bytes: 25556632 actual data bytes: 0
 rexmt data pkts: 1605 rexmt data pkts: 0
 rexmt data bytes: 2188780 rexmt data bytes: 0

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 48 of 60

To calculate the retransmission rate:

rexmt/actual * 100 = Retransmission rate

Or

1605/18695* 100 = 8.5%

The previous connection had a retransmission rate of 8.5% which is the cause of
the slow connection.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 49 of 60

Appendix A - Troubleshooting DNS Issues

Improper DNS settings constitute a majority of the problems on StrongMail systems
when attempting to send mail. All major ISPs require that any domain or IP address
attempting to send mail have both forward and reverse DNS records. The domain must
resolve both ways in order for a mail to be accepted.

There are many different domains that can be specified in an email message. It is
considered best practice to make sure that all of these domains specified resolve to a
PTR record in a DNS server. These domains in an email message include:

• Sending domain in envelope header – This is the default domain
setup in a StrongMail system.

• HELO Hostname – This is the name the StrongMail server presents
when initiating a data connection with a receiving MX server. This
is configurable if Virtual Server Groups are enabled.

• Return Path – This is the domain in the user specified bounce
address that is part of a mailing configuration file.

Using the nslookup Utility

The nslookup utility ships with both Linux and Microsoft Windows systems. It
provides an interactive command line interface which allows you to perform
multiple tasks on multiple servers from within one session.

The following steps describe how to debug DNS issues using DNS:

1. Launch the nslookup utility in interactive mode.

nslookup
>

2. Find the authoritative server for the records you wish to search. Set the
query to equal the authoritative name server for the domain. The local DNS
server you may be using may have incorrect cached data in it.

> set q=NS
> yahoo.com
Server: 127.0.0.1
Address: 127.0.0.1#53

yahoo.com nameserver = dns.yahoo.com.

3. Connect to the authoritative server.

> server dns.yahoo.com
Default server: dns.yahoo.com
Address: 192.168.1.222#53

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 50 of 60

4. Set the query to find A records for the domain.

> set q=a
> yahoo.com
Server: dns.yahoo.com
Address: 192.168.1.222#53

Name: yahoo.com
Address: 192.168.1.232

5. Now, set the query to find PTR records for the domain.

> set q=ptr
> 192.168.1.232
Server: dns.yahoo.com
Address: 192.168.1.222#53

232.1.168.192.in-addr.arpa name = yahoo.com.

6. Finally check to see if an MX record exists for the domain.

> set query=mx
> yahoo.com
Server: dns.yahoo.com
Address: 192.168.1.222#53

yahoo.com mail exchanger = 0 yahoo.com.

7. Optionally, you can also set the query to check the Domain Key record for
the domain. The TXT record type stands for “TEXT” and is a freeform
record. The first part of the record is called the “selector” and you must
know the selector name beforehand.

nslookup
> set q=TXT
> mail1._domainkey.yahoo.com.
Server: 192.168.1.222
Address: 192.168.1.222#53

customer._domainkey.yahoo.com text = "t=y\; k=rsa\;
p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC9thNIYshzgwsDCShKMHZb3qo
raTaue8YM6HQwa3U5m6Am52sOHLyKforKRkSgyvW+p+DrMoAFwhg1IrBnHUwcsnS8
AzrpmPgW8SsvKexai85PB6xttkOPKSR/UZ/bBonseMkzSwDnLsakmR9phyc2zEwst
+LnDvv8sD2CA8XU9wIDAQAB"

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 51 of 60

 Appendix B – Linux Networking Files

There are multiple files used by RHEL to configure networking on a system. These files
reside in the /etc filesystem. Each file handles different components of networking
for a RHEL system. The files include:

• /etc/sysconfig/network-scripts/ifcfg-eth*

• /etc/sysconfig/network

• /etc/hosts

• /etc/resolv.conf

• /etc/nsswitch.conf

• /etc/host.conf

• /etc/init.d/network

Each of the following sections describes these network configuration files.

Configuring The ifconfig-eth* Files

The ifconfig-eth* files include the most critical networking information for an
Ethernet interface. The system creates one of these files for each interface of the
system. For example, if the system had an eth0 and a virtual interface of eth0:1,
the system have ifconfig-eth0 and ifconfig-eth0:1 files. The system reads
these files at startup via the /etc/rc3.d/S10network run control script.

The file contains multiple fields that define critical networking information:

cat /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
BOOTPROTO=static
IPADDR=67.110.253.164
NETMASK=255.255.254.0
NETWORK=67.110.253.0
GATEWAY=67.110.253.1
ONBOOT=yes
TYPE=Ethernet

Each of the fields is described below:

• DEVICE – The logical device name of the Ethernet interface
(eth0, eth1, eth0:1, etc.)

• BOOTPROTO – This can be set to either static or DHCP

• IPADDR – The IP address assigned to the specified DEVICE

• NETMASK – The subnet mask applied to the IPADDR

• NETWORK – The network number applied to the IPADDR

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 52 of 60

• GATEWAY – The IP address of the default router for the IPADDR

• ONBOOT – This can be set to either yes or no to enable or disable
the DEVICE

• TYPE – This is the layer 2 media type (Ethernet, Token, ATM)

Configuring the network File

The network file determines whether or not to enable networking on the system.
It also sets the system’s physical node name.

more /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=cent

The physical node name differs from the hostname. The term “hostname” often
refers to the name of the host for a specific IP address. Since IP addresses are
often difficult to remember, a hostname is assigned to an IP address to make it
easier to remember. If a system has two IP addresses, it may have two hostnames
defined, but only one physical node name. Hostnames are defined in the
/etc/hosts file.

Configuring the hosts File

The /etc/hosts file enables local IP address to hostname resolution on a system.
This allows for a hostname instead of an IP address to be specified on the command
line.

more /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
192.168.65.165 cent example.com # us
192.168.65.167 eng01 # them

ssh eng01
root@eng01’s password:

Configuring the host.conf File

The /etc/host.conf file determines how the system resolves its own IP address.
The options are either to use DNS or the local /etc/hosts file. In the following
example, the system first checks the local /etc/hosts files first before resolving
to DNS.

more /etc/host.conf
order hosts,bind

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 53 of 60

Configuring the nsswitch.conf File

The /etc/nsswitch.conf file determines how the system looks up different
types of system attributes including: usernames, passwords, groups, and time
zones. In terms of networking, the nsswitch.conf file contains the hosts
keyword. This keyword determines how the system resolves other host IP
addresses. The options include: hosts file, DNS, LDAP, NIS, or NIS+.

RHEL ships with hosts and DNS as the options for hostname resolution:

more /etc/resolv.conf

<snip>

#hosts: db files nisplus nis dns
hosts: files dns

<snip>

Configuring the resolv.conf File

The /etc/resolv.conf file defines the DNS servers and domains that the system
uses when attempting to resolve hostnames. At a minimum, this file must define
one IP address of one DNS server in order to provide DNS resolution to the system.
Multiple DNS servers may be specified. The system uses the other entries based on
a timeout policy. If the first defined DNS server does not respond, then the system
tries the other DNS servers defined until one of the servers responds.

cat /etc/resolv.conf
search example.com
nameserver 192.168.65.220

The search keyword is optional. This keyword defines a domain to append to a
non fully quailified domain name (FQDN). In the following example, the user
specifies both the FQDN and non-FQDN for a ping command.

ping ns1.example.com
PING ns1.example.com (66.94.234.13) 56(84) bytes of data.
64 bytes from ns1.example.com (66.94.234.13): icmp_seq=0 ttl=52
time=27.1 ms

ping ns1
PING ns1.example.com (66.94.234.13) 56(84) bytes of data.
64 bytes from ns1.example.com (66.94.234.13): icmp_seq=0 ttl=52
time=27.1 ms

Configuring the network Run Control Script

The /etc/init.d/network script reads all of the above mentioned configuration
files, extracts all of the networking information, and configures the network
interfaces on the system.

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 54 of 60

Any time a system administrator changes networking configuration files, it is
recommended that the network script run to reflect the networking changes.

service network stop
service network start

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 55 of 60

Appendix B - Manual Network Configuration

RHEL provides a series of command utilities to configure network interfaces manually.
Proper configuration of the networking files should be sufficient to enable networking
on the system. In the event, however, that a temporary change to the network is
necessary, these tools are available. Any manual network configuration does not
survive a reboot.

Using the ifconfig Command

The ifconfig command both checks and sets the critical networking information
needed for a system to function. This includes the IP address, netmask, broadcast,
and network number settings.

In the following example, the ifconfig utility checks the settings for all Ethernet
interfaces:

ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:0C:29:4A:8A:E4
 inet addr:192.168.65.201 Bcast:192.168.65.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:918 errors:0 dropped:0 overruns:0 frame:0
 TX packets:96 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:141797 (138.4 Kb) TX bytes:9533 (9.3 Kb)
 Interrupt:10 Base address:0x1400

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:17728 errors:0 dropped:0 overruns:0 frame:0
 TX packets:17728 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:1265424 (1.2 Mb) TX bytes:1265424 (1.2 Mb)

If you want to check a specific interface, include the interface name after typing the
ifconfig command:

ifconfig eth0

To create a new virtual network interface on the system called eth0:1, type the
following ifconfig command to first enable the interface:

ifconfig eth0:1 192.168.1.91 netmask 255.255.255.0 broadcast \
> 192.168.1.255 up
ifconfig eth0:1
eth0:1 Link encap:Ethernet HWaddr 00:90:27:F6:0E:D8
 inet addr:192.168.1.91 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 Interrupt:5 Base address:0x1060 Memory:fa104000-fa104038

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 56 of 60

In order to make this virtual interface available across reboots, a configuration file
called ifcfg-eth0:1 must be created in the
/etc/sysconfig/network-scripts directory.

Using the route Command

The route command manipulates the system routing table. The system routing
table is stored in memory by the kernel and it is dynamically built at system
initialization. Like the ifconfig command, using the route command on the
command line only makes a temporary change to the routing table.

In the following example, the netstat command is used to check to see if a
default route exists on the system:

netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0

Only the LAN route is specified in the routing table (192.168.1.0). This will only
enable the system to send traffic to systems on the local LAN. In order to send
traffic beyond the LAN to other IP networks and the Internet, the route command
places a default gateway (default gw) in the routing table.

route add default gw 192.168.168.1.1
netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

The Flags field of the last entry in the routing table contains a UG for “Up and
Gateway”.

Using the netconfig Command

The netconfig command is a RHEL CLI utility that automates network
configuration on a system. This command provides a simpler interface to network
configuration and preserves the changes across reboots by writing the changes to
the appropriate files.

To run the netconfig command, type:

netconfig

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 57 of 60

Once you have completed the settings, select OK. The settings will not take effect
until the system reboots or services are restarted on the command line. To restart
services on the command line, run the following command:

service network restart

Stopping and Starting Network Services

There are many different ways to stop and start network services on a system. The
network run control script has already been mentioned in this guide. It is the
recommended method for stopping and starting services. In the case of multiple
interfaces, however, this method may not be the best. If multiple physical interfaces
exist on the system (eth0 and eth1 for example) and both interfaces may not be offline
at the same time, the ifup and ifdown commands may be used per specific
interface.

The ifup and ifdown commands are shell scripts that read the
/etc/sysconfig/network-scripts/ifcfg-eth* files and configure the network
interfaces accordingly.

In the following example, the ifup and ifdown commands take eth0 offline, but not
eth1. First, verify that both interfaces are up:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:B0:D0:DE:2F:1C
 inet addr:192.168.1.67 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::2b0:d0ff:fede:2f1c/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:699 errors:0 dropped:0 overruns:1 frame:0
 TX packets:6 errors:0 dropped:0 overruns:0 carrier:1
 collisions:0 txqueuelen:1000
 RX bytes:223496 (218.2 KiB) TX bytes:438 (438.0 b)
 Interrupt:5 Base address:0xec00

ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:A0:C9:9C:E1:C5

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 58 of 60

 inet addr:67.110.253.161 Bcast:67.110.253.255 Mask:255.255.254.0
 inet6 addr: fe80::2a0:c9ff:fe9c:e1c5/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:66976202 errors:0 dropped:0 overruns:0 frame:0
 TX packets:41625913 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:3212552412 (2.9 GiB) TX bytes:3992947992 (3.7 GiB)

Using the ifdown, down the eth0 interface:

ifdown eth0
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:B0:D0:DE:2F:1C
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:759 errors:0 dropped:0 overruns:1 frame:0
 TX packets:6 errors:0 dropped:0 overruns:0 carrier:1
 collisions:0 txqueuelen:1000
 RX bytes:242746 (237.0 KiB) TX bytes:438 (438.0 b)
 Interrupt:5 Base address:0xec00

Using the ifup command, up the eth0 interface:

ifup eth0
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:B0:D0:DE:2F:1C
 inet addr:192.168.1.67 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::2b0:d0ff:fede:2f1c/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:761 errors:0 dropped:0 overruns:1 frame:0
 TX packets:14 errors:0 dropped:0 overruns:0 carrier:1
 collisions:0 txqueuelen:1000
 RX bytes:243170 (237.4 KiB) TX bytes:986 (986.0 b)
 Interrupt:5 Base address:0xec00

Using the ping Command:

The ping command is a simple test to check remote connectivity. It sends an
IP packet with nothing more than a “Request” flag in it. If the remote server
receives the packet, it will then send a “Reply” back to the system.

When troubleshooting remote connectivity, always start by testing connectivity
to the default router:

ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=150 time=3.73 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=150 time=3.20 ms

--- 192.168.1.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1003ms
rtt min/avg/max/mdev = 3.209/3.474/3.739/0.265 ms

If the router responds, then attempt to contact the remote host:

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 59 of 60

ping ufsdump.org
PING 63.172.36.208 56(84) bytes of data.
64 bytes from 63.172.36.208: icmp_seq=1 ttl=64 time=6.07 ms
64 bytes from 63.172.36.208: icmp_seq=2 ttl=64 time=3.86 ms

If the ping command does not return ANY data (not even first line), then check
DNS, as the domain name you are trying to contact does not resolve.

NOTE: ICMP test utilities only verify the IP address of a remote system,
they do not provide any information on whether or not the TCP/UDP ports
on a system are available. Thus, a successful ICMP test using the ping
command does NOT mean that a service such as a web server is functioning.

If the domain does not respond to the ping, then attempt to ping any host on
the Internet. This will determine if there is a connectivity issues on your end or
an issue on their end. If you can ping any Internet system besides theirs, then it
is an issue on their end.

ping 4.2.2.1
PING 4.2.2.1 (4.2.2.1) 56(84) bytes of data.
64 bytes from 4.2.2.1: icmp_seq=1 ttl=246 time=74.5 ms
64 bytes from 4.2.2.1: icmp_seq=2 ttl=246 time=66.8 ms
64 bytes from 4.2.2.1: icmp_seq=3 ttl=246 time=67.3 ms

--- 4.2.2.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 66.874/69.604/74.557/3.514 ms

TCP/IP Troubleshooting for Systems Administrators

Copyright © 2006 StrongMail Systems, Inc. All Rights Reserved. 60 of 60

References

Blum, Richard. Network Performance Open Source Toolkit. Indianapolis, IN: Wiley
Publishing, 2003

Burns, Kevin. TCP/IP Analysis and Troubleshooting Toolkit. Indianapolis, IN: Wiley
Publishing, 2003

Haugdahl, J. Scott. Network Analysis and Troubleshooting. New York, NY: Addison-
Wesly, 2000

Hoch, Darren. Troubleshooting TCP/IP 2005. http://www.ufsdump.org

Wieers, Dag. DAG RPM Repository. http://dag.wieers.com

