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Performance Monitoring Introduction 
Performance tuning is the process of finding bottlenecks in a system and tuning the 
operating system to eliminate these bottlenecks.  Many administrators believe that 
performance tuning can be a “cook book” approach, which is to say that setting some 
parameters in the kernel will simply solve a problem. This is not the case. Performance 
tuning is about achieving balance between the different sub-systems of an OS. These 
sub-systems include: 

• CPU 

• Memory 

• IO 

• Network 
These sub-systems are all highly dependent on each other. Any one of them with high 
utilization can easily cause problems in the other. For example: 

• large amounts of page-in IO requests can fill the memory queues 

• full gigabit throughput on an Ethernet controller may consume a 
CPU 

• a CPU may be consumed attempting to maintain free memory 
queues 

• a large number of disk write requests from memory may consume a 
CPU and IO channels 

In order to apply changes to tune a system, the location of the bottleneck must be 
located. Although one sub-system appears to be causing the problems, it may be as a 
result of overload on another sub-system. 

Determining Application Type 
In order to understand where to start looking for tuning bottlenecks, it is first 
important to understand the behavior of the system under analysis. The 
application stack of any system is often broken down into two types: 

• IO Bound – An IO bound application requires heavy use of memory 
and the underlying storage system. This is due to the fact that an IO 
bound application is processing (in memory) large amounts of data. 
An IO bound application does not require much of the CPU or 
network (unless the storage system is on a network). IO bound 
applications use CPU resources to make IO requests and then often 
go into a sleep state. Database applications are often considered IO 
bound applications. 

• CPU Bound – A CPU bound application requires heavy use of the 
CPU.  CPU bound applications require the CPU for batch 
processing and/or mathematical calculations. High volume web 
servers, mail servers, and any kind of rendering server are often 
considered CPU bound applications. 
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Determining Baseline Statistics 
System utilization is contingent on administrator expectations and system 
specifications. The only way to understand if a system is having performance 
issues is to understand what is expected of the system. What kind of 
performance should be expected and what do those numbers look like? The only 
way to establish this is to create a baseline. Statistics must be available for a 
system under acceptable performance so it can be compared later against 
unacceptable performance. 

In the following example, a baseline snapshot of system performance is 
compared against a snapshot of the system under heavy utilization. 

# vmstat 1 
procs                      memory      swap          io     system         cpu 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy wa id 
 1  0 138592  17932 126272 214244    0    0     1    18  109    19  2  1  1 96 
 0  0 138592  17932 126272 214244    0    0     0     0  105    46  0  1  0 99 
 0  0 138592  17932 126272 214244    0    0     0     0  198    62 40 14  0 45 
 0  0 138592  17932 126272 214244    0    0     0     0  117    49  0  0  0 100 
 0  0 138592  17924 126272 214244    0    0     0   176  220   938  3  4 13 80 
 0  0 138592  17924 126272 214244    0    0     0     0  358  1522  8 17  0 75 
 1  0 138592  17924 126272 214244    0    0     0     0  368  1447  4 24  0 72 
 0  0 138592  17924 126272 214244    0    0     0     0  352  1277  9 12  0 79 
  
# vmstat 1 
procs                      memory      swap          io     system         cpu 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy wa id 
 2  0 145940  17752 118600 215592    0    1     1    18  109    19  2  1  1 96 
 2  0 145940  15856 118604 215652    0    0     0   468  789   108 86 14  0  0 
 3  0 146208  13884 118600 214640    0  360     0   360  498    71 91  9  0  0 
 2  0 146388  13764 118600 213788    0  340     0   340  672    41 87 13  0  0 
 2  0 147092  13788 118600 212452    0  740     0  1324  620    61 92  8  0  0 
 2  0 147360  13848 118600 211580    0  720     0   720  690    41 96  4  0  0 
 2  0 147912  13744 118192 210592    0  720     0   720  605    44 95  5  0  0 
 2  0 148452  13900 118192 209260    0  372     0   372  639    45 81 19  0  0 
 2  0 149132  13692 117824 208412    0  372     0   372  457    47 90 10  0  0 

 

Just by looking at the numbers in the last column (id) which represent idle time, 
we can see that under baseline conditions, the CPU is idle for 79% - 100% of the 
time. In the second output, we can see that the system is 100% utilized and not 
idle. What needs to be determined is whether or not the system at CPU utilization 
is managing.  
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Installing Monitoring Tools 
Most *nix systems ship with a series of standard monitoring commands. These 
monitoring commands have been a part of *nix since its inception. Linux provides these 
monitoring tools as part of the base installation or add-ons. Ultimately, there are 
packages available for most distributions with these tools. Although there are multiple 
open source and 3rd party monitoring tools, the goal of this paper is to use tools included 
with a Linux distribution. 

This paper describes how to monitor performance using the following tools. 

Figure 1: Performance Monitoring Tools 

Tool Description Base Repository 
vmstat all purpose performance tool yes yes 
mpstat provides statistics per CPU no yes 
sar all purpose performance monitoring tool no yes 
iostat provides disk statistics no yes 
netstat provides network statistics yes yes 
dstat monitoring statistics aggregator no in most distributions 
iptraf traffic monitoring dashboard no yes 
ethtool reports on Ethernet interface configuration yes yes 

 

Installing the Monitoring Packages 
The previously mentioned tools ship with most distributions, but are not installed 
as part of the base. The tools can be selected as an additional package during 
install or added later. The following example demonstrates how to install all the 
previously mentioned tools for the Fedora™ and CentOS distributions. 

# yum install sysstat 
# yum install iptraf 
# yum install dstat 
 
 
With the exception of dstat and iptraf, the other tools have periodically 
contained bugs in their counters. The type of bug and patch fix is distro dependent. 
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Introducing the CPU  
The utilization of a CPU is largely dependent on what resource is attempting to access it. 
The kernel has a scheduler that is responsible for scheduling two kinds of resources: 
threads (single or multi) and interrupts. The scheduler gives different priorities to the 
different resources. The following list outlines the priorities from highest to lowest: 

• Hardware Interrupts – These are requests made by hardware on 
the system to process data. For example, a disk may signal an 
interrupt when it has completed and IO transaction or a NIC may 
signal that a packet has been received. 

• Soft Interrupts – These are kernel software interrupts that have to 
do with maintenance of the kernel. For example, the kernel clock 
tick thread is a soft interrupt. It checks to make sure a process has 
not passed its allotted time on a processor. 

• Real Time Threads – Real time threads have more priority than the 
kernel itself. A real time process may come on the CPU and 
preempt (or “kick off) the kernel. The Linux 2.4 kernel is NOT a fully 
preemptable kernel, making it not ideal for real time application 
programming. 

• Kernel Threads – All kernel processing is handled at this level of 
priority.  

• User Threads – This space is often referred to as “userland”. All 
software applications run in the user space. This space has the 
lowest priority in the kernel scheduling mechanism. 

In order to understand how the kernel manages these different resources, a few key 
concepts need to be introduced. The following sections introduce context switches, run 
queues, and utilization. 

Context Switches 
Most modern processors can only run one process (single threaded) or thread at 
time. The n-way Hyper threaded processors have the ability to run n threads at a 
time. Still, the Linux kernel views each processor core on a dual core chip as an 
independent processor. For example, a system with one dual core processor is 
reported as two individual processors by the Linux kernel. 

A standard Linux kernel can run anywhere from 50 to 50,000 process threads at 
once. With only one CPU, the kernel has to schedule and balance these process 
threads. Each thread has an allotted time quantum to spend on the processor. 
Once a thread has either passed the time quantum or has been preempted by 
something with a higher priority (a hardware interrupt, for example), that thread is 
place back into a queue while the higher priority thread is placed on the 
processor. This switching of threads is referred to as a context switch.  

Every time the kernel conducts a context switch, resources are devoted to 
moving that thread off of the CPU registers and into a queue. The higher the 
volume of context switches on a system, the more work the kernel has to do in 
order to manage the scheduling of processes. 
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The Run Queue 
Each CPU maintains a run queue of threads. Ideally, the scheduler should be 
constantly running and executing threads. Process threads are either in a sleep 
state (blocked and waiting on IO) or they are runnable. If the CPU sub-system is 
heavily utilized, then it is possible that the kernel scheduler can’t keep up with the 
demand of the system. As a result, runnable processes start to fill up a run 
queue. The larger the run queue, the longer it will take for process threads to 
execute. 

A very popular term called “load” is often used to describe the state of the run 
queue. The system load is a combination of the amount of process threads 
currently executing along with the amount of threads in the CPU run queue. If 
two threads were executing on a dual core system and 4 were in the run queue, 
then the load would be 6. Utilities such as top report load averages over the 
course of 1, 5, and 15 minutes. 

CPU Utilization   
CPU utilization is defined as the percentage of usage of a CPU. How a CPU is 
utilized is an important metric for measuring system. Most performance 
monitoring tools categorize CPU utilization into the following categories: 

• User Time – The percentage of time a CPU spends executing 
process threads in the user space. 

• System Time – The percentage of time the CPU spends executing 
kernel threads and interrupts. 

• Wait IO – The percentage of time a CPU spends idle because ALL 
process threads are blocked waiting for IO requests to complete. 

• Idle – The percentage of time a processor spends in a completely 
idle state. 

Time Slicing 
The timeslice is the numeric value that represents how long a task can run until it 
is preempted. The scheduler policy must dictate a default timeslice, which is not 
simple. A timeslice that is too long will cause the system to have poor interactive 
performance; the system will no longer feel as if applications are being 
concurrently executed. A timeslice that is too short will cause significant amounts 
of processor time to be wasted on the overhead of switching processes, as a 
significant percentage of the system's time will be spent switching from one 
process with a short timeslice to the next. Furthermore, the conflicting goals of 
I/O-bound versus processor-bound processes again arise; I/O-bound processes 
do not need longer timeslices, whereas processor-bound processes crave long 
timeslices (to keep their caches hot, for example). 
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Static and Dynamic Priorities 
The kernel scheduler assigns a default priority to each process. Processes with 
higher priorities run before processes with lower priorities. The nice command is 
used to modify the kernel scheduler assigned priorities by either favoring a 
processor more or less. The nice command takes a range of -20 (highest) to 19 
(lowest). 

The kernel scheduler employs a reward and penalty system to processes and 
how they use their allowed time slice. In addition to the default priorities, the 
kernel will either raise (reward) or lower (punish) the priority by 5. The bonus is 
calculated based on the amount of time a process spends in sleep state.  

I/O bound processes spend most of their time in sleep state and as a result, they 
are rewarded by the scheduler. 

CPU bound processes constantly use their time slice and are often penalized by 
the scheduler. 

In the event that both a CPU bound and I/O bound process run on the same 
system, the I/O bound performance will stay the same while the CPU bound 
process will lose performance due to constant preemption by the I/O process. 

The ps command displays the priorities of a given process: 

# ps -eo pid,class,ni,pri,psr,comm | more 
  PID CLS  NI PRI PSR COMMAND 
    1 TS    0  24   0 init 
    2 TS   19   5   0 ksoftirqd/0 
    3 FF    - 139   0 watchdog/0 
    4 TS   -5  29   0 events/0 
    5 TS   -5  29   0 khelper 
    6 TS   -5  28   0 kthread 
    9 TS   -5  27   0 kblockd/0 
   10 TS   -5  19   0 kacpid 
   85 TS   -5  19   0 cqueue/0 
   88 TS   -5  29   0 khubd 
   90 TS   -5  29   0 kseriod 

 
Static and dynamic prioritization is new to the kernel 2.6. 
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The following ps output shows the penalization in priority of a CPU intensive 
process called cpu-hog. 

term1# ./cpu-hog 
  
term2# while :; do  ps -eo pid,ni,pri,pcpu,comm | egrep 
'hog|PRI'; sleep 1; done 
    PID  NI PRI %CPU COMMAND 
22855   0  20 84.5 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22855   0  18 89.6 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22855   0  15 92.2 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22855   0  15 93.8 cpu-hog 
 

By applying a nice value, we can further lower (show less favor) to the cpu-
hog process. The kernel scheduler penalizes 5 and an additional 7 points via the 
nice value. 

term1# nice –n 7 ./cpu-hog 
# while :; do  ps -eo pid,ni,pri,pcpu,comm | egrep 'hog|PRI'; 
sleep 1; done 
  PID  NI PRI %CPU COMMAND 
22917  20   7  0.0 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22917  15   5  98 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22917  12   3  87.2 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22917   9   0  98.8 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22917  8   0  100 cpu-hog 
  PID  NI PRI %CPU COMMAND 
22917  8   0  97.6 cpu-hog 

 

The following ps output tracks the find command. The find command is a heavy 
I/O bound process. It does not consume all of its timeslice, but rather it often 
goes into a sleep state. As a result, it is rewarded over time. 
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term1# find / 
 
term2# while :; do  ps -eo pid,ni,pri,pcpu,comm | egrep 
'find|PRI'; sleep 1; done 
  PID  NI PRI %CPU COMMAND 
23101   0  20  0.0 find 
  PID  NI PRI %CPU COMMAND 
23101   0  21  4.0 find 
  PID  NI PRI %CPU COMMAND 
23101   0  23  3.5 find 
  PID  NI PRI %CPU COMMAND 
23101   0  23  4.3 find 
  PID  NI PRI %CPU COMMAND 
23101   0  23  4.2 find 
  PID  NI PRI %CPU COMMAND 
23101   0  23  4.4 find 

 

When run together, the I/O process is gradually rewarded and the CPU process 
penalized. The processor is also preempted more frequently, resulting in less 
available CPU cycles. 

# while :; do  ps -eo pid,ni,pri,pcpu,comm | egrep 'find|hog'; 
sleep 1; done 
23675   0  20 70.9 cpu-hog 
23676   0  20  5.6 find 
23675   0  20 69.9 cpu-hog 
23676   0  21  5.6 find 
23675   0  20 70.6 cpu-hog 
23676   0  23  5.8 find 
23675   0  19 71.2 cpu-hog 
23676   0  23  6.0 find 
23675   0  19 71.8 cpu-hog 
23676   0  23  6.1 find 
23675   0  18 72.8 cpu-hog 
23676   0  23  6.2 find 
23675   0  16 73.2 cpu-hog 
23676   0  23  6.6 find 
23675   0  14 73.9 cpu-hog 
 
The kernel scheduling algorithm was completely rewritten in kernel 2.6 to be much 
more effective. Dubbed the “0(1)” scheduler, it has significant performance 
enhancements over the kernel 2.4 scheduler. 

 

 

 

 



Linux Performance Monitoring  

Copyright 2007 Darren Hoch. All rights reserved.  15 of 47 

 

CPU Performance Monitoring 
Understanding how well a CPU is performing is a matter of interpreting run queue, 
utilization, and context switching performance. As mentioned earlier, performance is all 
relative to baseline statistics. There are, however, some general performance 
expectations on any system. These expectations include: 

• Run Queues – A run queue should have no more than 1-3 threads 
queued per processor. For example, a dual processor system 
should not have more than 6 threads in the run queue. 

• CPU Utilization – If a CPU is fully utilized, then the following 
balance of utilization should be achieved. 
 65% – 70% User Time 
 30% - 35% System Time 
 0% - 5% Idle Time 

• Context Switches – The amount of context switches is directly 
relevant to CPU utilization. A high amount of context switching is 
acceptable if CPU utilization stays within the previously mentioned 
balance 

There are many tools that are available for Linux that measure these statistics. The first 
two tools examined will be vmstat and top. 

Using the vmstat Utility 
The vmstat utility provides a good low-overhead view of system performance. 
Because vmstat is such a low-overhead tool, it is practical to keep it running on 
a console even under a very heavily loaded server were you need to monitor the 
health of a system at a glance. The utility runs in two modes: average and 
sample mode. The sample mode will measure statistics over a specified interval. 
This mode is the most useful when understanding performance under a 
sustained load. The following example demonstrates vmstat running at 1 
second intervals. 

# vmstat 1 
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu---- 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy id wa 
 0  0 104300  16800  95328  72200    0    0     5    26    7    14  4  1 95  0 
 0  0 104300  16800  95328  72200    0    0     0    24 1021    64  1  1 98  0 
 0  0 104300  16800  95328  72200    0    0     0     0 1009    59  1  1 98  0 
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The relevant fields in the output are as follows: 

Table 1: The vmstat CPU statistics 

Field Description 

r 
The amount of threads in the run queue. These are threads that are runnable, 
but the CPU is not available to execute them. 

b This is the number of processes blocked and waiting on IO requests to finish. 
in This is the number of interrupts being processed. 
cs This is the number of context switches currently happening on the system. 
us This is the percentage of user CPU utilization. 
sys This is the percentage of kernel and interrupts utilization. 

wa 
This is the percentage of idle processor time due to the fact that ALL runnable 
threads are blocked waiting on IO. 

id This is the percentage of time that the CPU is completely idle. 
 

Using the dstat Utility 

The dstat utility provides the ability to condense the output of vmstat down to 
specific CPU related fields. 

# dstat -cip 1 
----total-cpu-usage---- ----interrupts--- ---procs--- 
usr sys idl wai hiq siq|  15   169   185 |run blk new 
  6   1  91   2   0   0|  12     0    13 |  0   0   0 
  1   0  99   0   0   0|   0     0     6 |  0   0   0 
  0   0 100   0   0   0|  18     0     2 |  0   0   0 
  0   0 100   0   0   0|   0     0     3 |  0   0   0 

 

One off the benefits of dstat over vmstat is that dstat provides interrupts per 
device. The first line of the dstat output for interrupts displays an interrupt 
number associated with a device. The interrupt number may be reconciled via 
the /proc/interrupts file. 

# cat /proc/interrupts 
           CPU0        
  0: 1277238713    IO-APIC-edge  timer 
  6:          5    IO-APIC-edge  floppy 
  7:          0    IO-APIC-edge  parport0 
  8:          1    IO-APIC-edge  rtc 
  9:          1   IO-APIC-level  acpi 
 14:    6011913    IO-APIC-edge  ide0 
 15:   15761438    IO-APIC-edge  ide1 
169:         26   IO-APIC-level  Intel 82801BA-ICH2 
185:   16785489   IO-APIC-level  eth1 
193:          0   IO-APIC-level  uhci_hcd:usb1 

The following example demonstrates the difference between a system with an 
idle NIC card and a utilized NIC card (eth1). 
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# dstat -cip 1 
----total-cpu-usage---- ----interrupts--- ---procs--- 
usr sys idl wai hiq siq|  15   169   185 |run blk new 
  6   1  91   2   0   0|  12     0    13 |  0   0   0 
  0   0 100   0   0   0|  15     0     6 |  0   0   0 
  0   0 100   0   0   0|   3     0     3 |  0   0   0 
  1   0  99   0   0   0|   0     0     3 |  0   0   0 
  0   0 100   0   0   0|  18     0     2 |  0   0   0 
  0   0 100   0   0   0|   0     0     4 |  0   0   0 
  
# while : 
> do wget http://www.litemail.org/index.html 
> done 
 
# dstat –cip 1 
----total-cpu-usage---- ----interrupts--- ---procs--- 
usr sys idl wai hiq siq|  15   169   185 |run blk new   
  1   2  97   0   0   0|  18     0    67 |  0   0   2 
  2   3  95   0   0   0|   0     0    91 |  0   0   3 
  5   3  90   0   0   2|  18     0  1064 |  0   0   4 
  5   3  91   0   0   1|   0     0   400 |  0   0   5 
  3   3  93   0   0   1|  18     0   515 |  0   0   5 
  2   3  94   1   0   0|   0     0   103 |  0   0   4 

 

The eth1 device has an id of 185. The amount of interrupts generated by the 
wget command utilized an average of 8% of the CPU as the idle time decreased 
from an average of 99% idle to 92% idle.  

Case Study: Application Spike 

In the following example, a system is experiencing CPU performance spikes, 
going from completely idle to completely utilized.  

# vmstat 1 
procs                      memory      swap          io     system         cpu 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy wa id 
 4  0 200560  91656  88596 176092    0    0     0     0  103    12  0  0  0 100 
 0  0 200560  91660  88600 176092    0    0     0     0  104    12  0  0  0 100 
 0  0 200560  91660  88600 176092    0    0     0     0  103    16  1  0  0 99 
 0  0 200560  91660  88600 176092    0    0     0     0  103    12  0  0  0 100 
 0  0 200560  91660  88604 176092    0    0     0    80  108    28  0  0  6 94 
 0  0 200560  91660  88604 176092    0    0     0     0  103    12  0  0  0 100 
 1  0 200560  91660  88604 176092    0    0     0     0  103    12  0  0  0 100 
 1  0 200560  91652  88604 176092    0    0     0     0  113    27 14  3  0 83 
 1  0 200560  84176  88604 176092    0    0     0     0  104    14 95  5  0  0 
 2  0 200560  87216  88604 176092    0    0     0   324  137    96 86  9  1  4 
 2  0 200560  78592  88604 176092    0    0     0     0  104    23 97  3  0  0 
 2  0 200560  90940  88604 176092    0    0     0     0  149    63 92  8  0  0 
 2  0 200560  83036  88604 176092    0    0     0     0  104    32 97  3  0  0 
 2  0 200560  74916  88604 176092    0    0     0     0  103    22 93  7  0  0 
 2  0 200560  80188  88608 176092    0    0     0   376  130   104 70 30  0  0 
 3  0 200560  74028  88608 176092    0    0     0     0  103    69 70 30  0  0 
 2  0 200560  81560  88608 176092    0    0     0     0  219   213 38 62  0  0 
 1  0 200560  90200  88608 176100    0    0     8     0  153   118 56 31  0 13 
 0  0 200560  88692  88612 179036    0    0  2940     0  249   249 44  4 24 28 
 2  0 200560  88708  88612 179036    0    0     0   484  254    94 39 22  1 38 
 0  0 200560  88708  88612 179036    0    0     0     0  121    22  0  0  0 100 
 0  0 200560  88708  88612 179036    0    0     0     0  103    12  0  0  0 100 
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The following observations are made from the output: 

• The run queue (r) during the spike goes as high as 3, almost 
passing the threshold. 

• The percentage of CPU time in the user space (us)goes to almost 
90%, but then levels off.  

• During this time, the amount of context switches (cs) does not 
increase significantly, this could suggest that a single threaded 
application used a large amount of processor for a short period of 
time. 

• It appears that the application batches all disk writes in one action. 
For one second, the CPU experiences a disk usage spike (wa = 
24%) 

Case Study: Sustained CPU Utilization 

In the next example, the system is completely utilized.  

# vmstat 1 
procs                      memory      swap          io     system         cpu 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy wa id 
 3  0 206564  15092  80336 176080    0    0     0     0  718    26 81 19  0  0 
 2  0 206564  14772  80336 176120    0    0     0     0  758    23 96  4  0  0 
 1  0 206564  14208  80336 176136    0    0     0     0  820    20 96  4  0  0 
 1  0 206956  13884  79180 175964    0  412     0  2680 1008    80 93  7  0  0 
 2  0 207348  14448  78800 175576    0  412     0   412  763    70 84 16  0  0 
 2  0 207348  15756  78800 175424    0    0     0     0  874    25 89 11  0  0 
 1  0 207348  16368  78800 175596    0    0     0     0  940    24 86 14  0  0 
 1  0 207348  16600  78800 175604    0    0     0     0  929    27 95  3  0  2 
 3  0 207348  16976  78548 175876    0    0     0  2508  969    35 93  7  0  0 
 4  0 207348  16216  78548 175704    0    0     0     0  874    36 93  6  0  1 
 4  0 207348  16424  78548 175776    0    0     0     0  850    26 77 23  0  0 
 2  0 207348  17496  78556 175840    0    0     0     0  736    23 83 17  0  0 
 0  0 207348  17680  78556 175868    0    0     0     0  861    21 91  8  0  1 

The following observations are made from the output: 

• There are a high amount of interrupts (in) and a low amount of 
context switches. It appears that a single process is making 
requests to hardware devices. 

• To further prove the presence of a single application, the user (us) 
time is constantly at 85% and above. Along with the low amount of 
context switches, the process comes on the processor and stays on 
the processor. 

• The run queue is just about at the limits of acceptable performance. 
On a couple occasions, it goes beyond acceptable limits. 
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Case Study: Overloaded Scheduler 

In the following example, the kernel scheduler is saturated with context switches. 

# vmstat 1 
procs                      memory      swap          io     system         cpu 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy wa id 
 2  1 207740  98476  81344 180972    0    0  2496     0  900  2883  4 12 57 27 
 0  1 207740  96448  83304 180984    0    0  1968   328  810  2559  8  9 83  0 
 0  1 207740  94404  85348 180984    0    0  2044     0  829  2879  9  6 78  7 
 0  1 207740  92576  87176 180984    0    0  1828     0  689  2088  3  9 78 10 
 2  0 207740  91300  88452 180984    0    0  1276     0  565  2182  7  6 83  4 
 3  1 207740  90124  89628 180984    0    0  1176     0  551  2219  2  7 91  0 
 4  2 207740  89240  90512 180984    0    0   880   520  443   907 22 10 67  0 
 5  3 207740  88056  91680 180984    0    0  1168     0  628  1248 12 11 77  0 
 4  2 207740  86852  92880 180984    0    0  1200     0  654  1505  6  7 87  0 
 6  1 207740  85736  93996 180984    0    0  1116     0  526  1512  5 10 85  0 
 0  1 207740  84844  94888 180984    0    0   892     0  438  1556  6  4 90  0 

The following conclusions can be drawn from the output: 

• The amount of context switches is higher than interrupts, suggesting 
that the kernel has to spend a considerable amount of time context 
switching threads. 

• The high volume of context switches is causing an unhealthy 
balance of CPU utilization. This is evident by the fact that the wait 
on IO percentage is extremely high and the user percentage is 
extremely low. 

• Because the CPU is block waiting for I/O, the run queue starts to fill 
and the amount of threads blocked waiting on I/O also fills. 

Using the mpstat Utility 

If your system has multiple processor cores, you can use the mpstat command 
to monitor each individual core. The Linux kernel treats a dual core processor as 
2 CPU’s. So, a dual processor system with dual cores will report 4 CPUs 
available. The mpstat command provides the same CPU utilization statistics as 
vmstat, but mpstat breaks the statistics out on a per processor basis. 

# mpstat –P ALL 1 
Linux 2.4.21-20.ELsmp (localhost.localdomain)   05/23/2006 
 
05:17:31 PM  CPU   %user   %nice %system   %idle    intr/s 
05:17:32 PM  all    0.00    0.00    3.19   96.53    13.27 
05:17:32 PM    0    0.00    0.00    0.00  100.00      0.00 
05:17:32 PM    1    1.12    0.00   12.73   86.15     13.27 
05:17:32 PM    2    0.00    0.00    0.00  100.00      0.00 
05:17:32 PM    3    0.00    0.00    0.00  100.00      0.00 
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Case Study: Underutilized Process Load 

In the following case study, a 4 CPU cores are available. There are two CPU 
intensive processes running that fully utilize 2 of the cores (CPU 0 and 1). The 
third core is processing all kernel and other system functions (CPU 3). The fourth 
core is sitting idle (CPU 2). 

The top command shows that there are 3 processes consuming almost an entire 
CPU core: 

# top -d 1 
top - 23:08:53 up  8:34,  3 users,  load average: 0.91, 0.37, 0.13 
Tasks: 190 total,   4 running, 186 sleeping,   0 stopped,   0 zombie 
Cpu(s): 75.2% us,  0.2% sy,  0.0% ni, 24.5% id,  0.0% wa,  0.0% hi,  0.0% 
si 
Mem:   2074736k total,   448684k used,  1626052k free,    73756k buffers 
Swap:  4192956k total,        0k used,  4192956k free,   259044k cached 
 
  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND                 
15957 nobody    25   0  2776  280  224 R  100  20.5  0:25.48 php                      
15959 mysql     25   0  2256  280  224 R  100  38.2  0:17.78 mysqld                  
15960 apache    25   0  2416  280  224 R  100  15.7  0:11.20 httpd                   
15901 root      16   0  2780 1092  800 R    1  0.1   0:01.59 top                     
    1 root      16   0  1780  660  572 S    0  0.0   0:00.64 init                 
 
# mpstat –P ALL 1 
Linux 2.4.21-20.ELsmp (localhost.localdomain)   05/23/2006 
 
05:17:31 PM  CPU   %user   %nice %system   %idle    intr/s 
05:17:32 PM  all   81.52    0.00   18.48   21.17    130.58 
05:17:32 PM    0   83.67    0.00   17.35    0.00    115.31 
05:17:32 PM    1   80.61    0.00   19.39    0.00     13.27 
05:17:32 PM    2    0.00    0.00   16.33   84.66      2.01 
05:17:32 PM    3   79.59    0.00   21.43    0.00      0.00 
 
05:17:32 PM  CPU   %user   %nice %system   %idle    intr/s 
05:17:33 PM  all   85.86    0.00   14.14   25.00    116.49 
05:17:33 PM    0   88.66    0.00   12.37    0.00    116.49 
05:17:33 PM    1   80.41    0.00   19.59    0.00      0.00 
05:17:33 PM    2    0.00    0.00    0.00  100.00      0.00 
05:17:33 PM    3   83.51    0.00   16.49    0.00      0.00 
 
05:17:33 PM  CPU   %user   %nice %system   %idle    intr/s 
05:17:34 PM  all   82.74    0.00   17.26   25.00    115.31 
05:17:34 PM    0   85.71    0.00   13.27    0.00    115.31 
05:17:34 PM    1   78.57    0.00   21.43    0.00      0.00 
05:17:34 PM    2    0.00    0.00    0.00  100.00      0.00 
05:17:34 PM    3   92.86    0.00    9.18    0.00      0.00 
 
05:17:34 PM  CPU   %user   %nice %system   %idle    intr/s 
05:17:35 PM  all   87.50    0.00   12.50   25.00    115.31 
05:17:35 PM    0   91.84    0.00    8.16    0.00    114.29 
05:17:35 PM    1   90.82    0.00   10.20    0.00      1.02 
05:17:35 PM    2    0.00    0.00    0.00  100.00      0.00 
05:17:35 PM    3   81.63    0.00   15.31    0.00      0.00 
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You can determine which process is taking up which CPU by running the ps 
command again and monitoring the PSR column. 

# while :; do  ps -eo pid,ni,pri,pcpu,psr,comm | grep 'mysqld'; sleep 1; 
done 
  PID  NI PRI %CPU PSR COMMAND 
15775   0  15 86.0   3 mysqld 
  PID  NI PRI %CPU PSR COMMAND 
15775   0  14 94.0   3 mysqld 
  PID  NI PRI %CPU PSR COMMAND 
15775   0  14 96.6   3 mysqld 
  PID  NI PRI %CPU PSR COMMAND 
15775   0  14 98.0   3 mysqld 
  PID  NI PRI %CPU PSR COMMAND 
15775   0  14 98.8   3 mysqld 
  PID  NI PRI %CPU PSR COMMAND 
15775   0  14 99.3   3 mysqld 

 

Conclusion 
Monitoring CPU performance consists of the following actions: 

• Check the system run queue and make sure there are no more than 
3 runnable threads per processor 

• Make sure the CPU utilization is split between 70/30 between user 
and system 

• When the CPU spends more time in system mode, it is more than 
likely overloaded and trying to reschedule priorities 

• Running CPU bound process always get penalized while I/O 
process are rewarded 
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Introducing Virtual Memory 
Virtual memory uses a disk as an extension of RAM so that the effective size of usable 
memory grows correspondingly. The kernel will write the contents of a currently unused 
block of memory to the hard disk so that the memory can be used for another purpose. 
When the original contents are needed again, they are read back into memory. This is all 
made completely transparent to the user; programs running under Linux only see the 
larger amount of memory available and don't notice that parts of them reside on the disk 
from time to time. Of course, reading and writing the hard disk is slower (on the order of a 
thousand times slower) than using real memory, so the programs don't run as fast. The 
part of the hard disk that is used as virtual memory is called the swap space. 

Virtual Memory Pages 
Virtual memory is divided into pages. Each virtual memory page on the X86 
architecture is 4KB. When the kernel writes memory to and from disk, it writes 
memory in pages. The kernel writes memory pages to both the swap device and 
the file system.  

Virtual Size (VSZ) and Resident Set Size (RSS) 
When an application starts, it requests virtual memory (VSZ). The kernel either 
grants or denies the virtual memory request. As the application uses the 
requested memory, that memory is mapped into physical memory. The RSS is 
the amount of virtual memory that is physically mapped into memory. In most 
cases, an application uses less resident memory (RSS) than it requested (VSZ). 

The following output from the ps command displays the VSZ and RSS values. In 
all cases, VSZ is greater than RSS. This means that although an application 
requested virtual memory, not all of it is allocated in RAM (RSS). 

# ps –aux 
USER       PID %CPU %MEM   VSZ  RSS TTY      STAT START   TIME COMMAND 
 
<snip> 
 
daemon    2177  0.0  0.2  3352  648 ?        Ss   23:03   0:00 /usr/sbin/atd 
dbus      2196  0.0  0.5 13180 1320 ?        Ssl  23:03   0:00 dbus-daemon-1 --sys 
root      2210  0.0  0.4  2740 1044 ?        Ss   23:03   0:00 cups-config-daemon 
root      2221  0.3  1.5  6108 4036 ?        Ss   23:03   0:02 hald 
root      2231  0.0  0.1  2464  408 tty1     Ss+  23:03   0:00 /sbin/mingetty tty1 
root      2280  0.0  0.1  3232  404 tty2     Ss+  23:03   0:00 /sbin/mingetty tty2 
root      2343  0.0  0.1  1692  408 tty3     Ss+  23:03   0:00 /sbin/mingetty tty3 
root      2344  0.0  0.1  2116  404 tty4     Ss+  23:03   0:00 /sbin/mingetty tty4 
root      2416  0.0  0.1  1476  408 tty5     Ss+  23:03   0:00 /sbin/mingetty tty5 
root      2485  0.0  0.1  1976  408 tty6     Ss+  23:03   0:00 /sbin/mingetty tty6 
root      2545  0.0  0.9 10920 2336 ?        Ss   23:03   0:00 /usr/bin/gdm-binary 

 

 

 



Linux Performance Monitoring  

Copyright 2007 Darren Hoch. All rights reserved.  23 of 47 

 

Kernel Memory Paging  
Memory paging is a normal activity not to be confused with memory swapping. Memory 
paging is the process of synching memory back to disk at normal intervals. Over time, 
applications will grow to consume all of memory. At some point, the kernel must scan 
memory and reclaim unused pages to be allocated to other applications.  

The Page Frame Reclaim Algorithm (PFRA) 
The PFRA is responsible for freeing memory. The PFRA selects which memory 
pages to free by page type. Page types are listed below: 

• Unreclaimable – locked, kernel, reserved pages 

• Swappable – anonymous memory pages  

• Syncable – pages backed by a disk file 

• Discardable – static pages, discarded pages 
All but the “unreclaimable” pages may be reclaimed by the PFRA. 

There are two main functions in the PFRA. These include the kswapd kernel 
thread and the “Low On Memory Reclaiming” function.  

kswapd 

The kswapd daemon is responsible for ensuring that memory stays free. It 
monitors the pages_high and pages_low watermarks in the kernel. If the 
amount of free memory is below pages_low, the kswapd process starts a scan 
to attempt to free 32 pages at a time. It repeats this process until the amount of 
free memory is above the pages_high watermark. 

The kswapd thread performs the following actions: 

• If the page is unmodified, it places the page on the free list. 

• If the page is modified and backed by a filesystem, it writes the 
contents of the page to disk. 

• If the page is modified and not backed up by any filesystem 
(anonymous), it writes the contents of the page to the swap device. 

# ps -ef | grep kswapd 
root        30     1  0 23:01 ?        00:00:00 [kswapd0] 
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Low on Memory Reclaiming (LMR) 

The LMR attempts to reclaim pages when a page allocation fails. Page 
allocations fail when kswapd can’t maintain the enough free memory. It attempts 
to free 1024 dirty pages per iteration until memory allocation is successful. 

Out of Memory Killer (OMK) 

The kernel implements OMK when the LMR can’t reclaim pages fast enough. 
The OMK uses a selective algorithm (select_bad_process()) to determine 
which processes to kill. Once OMK has selected a process, it will send it a 
SIGKILL. This will immediately free pages. The OMK selects a process to kill 
based on the following criteria: 

• The process owns a large number of page frames. 

• The process should only lose a small amount of work. 

• The process should have a low static priority process. 

• The process should not be owned by root. 

 

Kernel Paging with pdflush 
The pdflush daemon is responsible for synchronizing any pages associated 
with a file on a filesystem back to disk. In other words, when a file is modified in 
memory, the pdflush daemon writes it back to disk.  

# ps -ef | grep pdflush 
root        28     3  0 23:01 ?        00:00:00 [pdflush] 
root        29     3  0 23:01 ?        00:00:00 [pdflush] 

The pdflush daemon starts synchronizing dirty pages back to the filesystem 
when 10% of the pages in memory are dirty. This is due to a kernel tuning 
parameter called vm.dirty_background_ratio. 

# sysctl -n vm.dirty_background_ratio 
10 

The pdflush daemon works independently of the PFRA under most 
circumstances. When the kernel invokes the LMR algorithm, the LMR specifically 
forces pdflush to flush dirty pages in addition to other page freeing routines. 

Under intense memory pressure in the 2.4 kernel, the system would experience 
swap thrashing. This would occur when the PFRA would steal a page that an active 
process was trying to use. As a result, the process would have to reclaim that page 
only for it to be stolen again, creating a thrashing condition. This was fixed in 
kernel 2.6 with the “Swap Token”, which prevents the PFRA from constantly 
stealing the same page from a process. 
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Case Study: Large Inbound I/O 
The vmstat utility reports on virtual memory usage in addition to CPU usage. 
The following fields in the vmstat output are relevant to virtual memory: 

Table 2: The vmstat Memory Statistics 

Field Description 

Swapd 
The amount of virtual memory in KB currently in use. As free memory reaches low 
thresholds, more data is paged to the swap device. 

Free 
The amount of physical RAM in kilobytes currently available to running 
applications. 

Buff 
The amount of physical memory in kilobytes in the buffer cache as a result of 
read() and write() operations. 

Cache The amount of physical memory in kilobytes mapped into process address space. 
So The amount of data in kilobytes written to the swap disk. 
Si The amount of data in kilobytes written from the swap disk back into RAM. 

Bo 
The amount of disk blocks paged out from the RAM to the filesystem or swap 
device. 

Bi The amount of disk blocks paged into RAM from the filesystem or swap device. 
 

The following vmstat output demonstrates heavy utilization of virtual memory 
during an I/O application spike. 

# vmstat 3 
 procs           memory              swap          io     system         cpu 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy id wa 
 3  2 809192 261556  79760  886880  416    0  8244   751  426   863 17  3  6 75 
 0  3 809188 194916  79820  952900  307    0 21745  1005 1189  2590 34  6 12 48 
 0  3 809188 162212  79840  988920   95    0 12107     0 1801  2633  2  2  3 94 
 1  3 809268  88756  79924 1061424  260   28 18377   113 1142  1694  3  5  3 88 
 1  2 826284  17608  71240 1144180  100 6140 25839 16380 1528  1179 19  9 12 61 
 2  1 854780  17688  34140 1208980    1 9535 25557 30967 1764  2238 43 13 16 28 
 0  8 867528  17588  32332 1226392   31 4384 16524 27808 1490  1634 41 10  7 43 
 4  2 877372  17596  32372 1227532  213 3281 10912  3337  678   932 33  7  3 57 
 1  2 885980  17800  32408 1239160  204 2892 12347 12681 1033   982 40 12  2 46 
 5  2 900472  17980  32440 1253884   24 4851 17521  4856  934  1730 48 12 13 26 
 1  1 904404  17620  32492 1258928   15 1316  7647 15804  919   978 49  9 17 25 
 4  1 911192  17944  32540 1266724   37 2263 12907  3547  834  1421 47 14 20 20 
 1  1 919292  17876  31824 1275832    1 2745 16327  2747  617  1421 52 11 23 14 
 5  0 925216  17812  25008 1289320   12 1975 12760  3181  772  1254 50 10 21 19 
 0  5 932860  17736  21760 1300280    8 2556 15469  3873  825  1258 49 13 24 15 
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The following observations are made from this output: 

• A large amount of disk blocks are paged in (bi) from the filesystem. 
This is evident in the fact that the cache of data in process address 
spaces (cache) grows. 

• During this period, the amount of free memory (free) remains 
steady at 17MB even though data is paging in from the disk to 
consume free RAM. 

• To maintain the free list, kswapd steals memory from the read/write 
buffers (buff) and assigns it to the free list. This is evident in the 
gradual decrease of the buffer cache (buff). 

• The kswapd process then writes dirty pages to the swap device 
(so). This is evident in the fact that the amount of virtual memory 
utilized gradually increases (swpd). 

Conclusion 
Virtual memory performance monitoring consists of the following actions: 

• The less major page faults on a system, the better response times 
achieved as the system is leveraging memory caches over disk 
caches. 

• Low amounts of free memory are a good sign that caches are 
effectively used unless there are sustained writes to the swap 
device and disk. 

• If a system reports any sustained activity on the swap device, it 
means there is a memory shortage on the system. 
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Introducing I/O Monitoring 
Disk I/O subsystems are the slowest part of any Linux system. This is due mainly to their 
distance from the CPU and the fact that disks require the physics to work (rotation and 
seek). If the time taken to access disk as opposed to memory was converted into minutes 
and seconds, it is the difference between 7 days and 7 minutes. As a result, it is essential 
that the Linux kernel minimizes the amount of I/O it generates on a disk. The following 
subsections describe the different ways the kernel processes data I/O from disk to 
memory and back. 

Reading and Writing Data - Memory Pages 
The Linux kernel breaks disk I/O into pages. The default page size on most Linux 
systems is 4K. It reads and w rites disk blocks in and out of memory in 4K page 
sizes. You can check the page size of your system by using the time command 
in verbose mode and searching for the page size: 

# /usr/bin/time -v date 
 
<snip> 
 
Page size (bytes): 4096 
 
<snip> 
 

Major and Minor Page Faults 
Linux, like most UNIX systems, uses a virtual memory layer that maps into 
physical address space. This mapping is "on demand" in the sense that when a 
process starts, the kernel only maps that which is required. When an application 
starts, the kernel searches the CPU caches and then physical memory. If the 
data does not exist in either, the kernel issues a major page fault (MPF). A MPF 
is a request to the disk subsystem to retrieve pages off disk and buffer them in 
RAM. 

Once memory pages are mapped into the buffer cache, the kernel will attempt to 
use these pages resulting in a minor page fault (MnPF). A MnPF saves the 
kernel time by reusing a page in memory as opposed to placing it back on the 
disk. 

In the following example, the time command is used to demonstrate how many 
MPF and MnPF occurred when an application started. The first time the 
application starts, there are many MPFs: 
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# /usr/bin/time -v evolution 
 
<snip> 
 
Major (requiring I/O) page faults: 163 
Minor (reclaiming a frame) page faults: 5918 
 
<snip> 
 
The second time evolution starts, the kernel does not issue any MPFs because the 
application is in memory already: 
 
# /usr/bin/time -v evolution 
 
<snip> 
 
Major (requiring I/O) page faults: 0 
Minor (reclaiming a frame) page faults: 5581 
 
<snip> 
 

The File Buffer Cache 
The file buffer cache is used by the kernel to minimize MPFs and maximize 
MnPFs. As a system generates I/O over time, this buffer cache will continue to 
grow as the system will leave these pages in memory until memory gets low and 
the kernel needs to "free" some of these pages for other uses. The end result is 
that many system administrators see low amounts of free memory and become 
concerned when in reality, the system is just making good use of its caches. 

The following output is taken from the /proc/meminfo file: 

# cat /proc/meminfo 
MemTotal: 2075672 kB 
MemFree: 52528 kB 
Buffers: 24596 kB 
Cached: 1766844 kB 
 
<snip> 
 

The system has a total of 2 GB (MemTotal) of RAM available on it. There is 
currently 52 MB of RAM "free" (MemFree), 24 MB RAM that is allocated to disk 
write operations (Buffers), and 1.7 GB of pages read from disk in RAM 
(Cached). 

The kernel is using these via the MnPF mechanism as opposed to pulling all of 
these pages in from disk. It is impossible to tell from these statistics whether or 
not the system is under distress as we only have part of the picture. 
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Types of Memory Pages 
There are 3 types of memory pages in the Linux kernel. These pages are 
described below: 

• Read Pages – These are pages of data read in via disk (MPF) that 
are read only and backed on disk. These pages exist in the Buffer 
Cache and include static files, binaries, and libraries that do not 
change. The Kernel will continue to page these into memory as it 
needs them. If memory becomes short, the kernel will "steal" these 
pages and put them back on the free list causing an application to 
have to MPF to bring them back in. 

• Dirty Pages – These are pages of data that have been modified by 
the kernel while in memory. These pages need to be synced back to 
disk at some point using the pdflush daemon. In the event of a 
memory shortage, kswapd (along with pdflush) will write these 
pages to disk in order to make more room in memory. 

• Anonymous Pages – These are pages of data that do belong to a 
process, but do not have any file or backing store associated with 
them. They can't be synchronized back to disk. In the event of a 
memory shortage, kswapd writes these to the swap device as 
temporary storage until more RAM is free ("swapping" pages). 

Writing Data Pages Back to Disk 
Applications themselves may choose to write dirty pages back to disk 
immediately using the fsync() or sync() system calls. These system calls 
issue a direct request to the I/O scheduler. If an application does not invoke 
these system calls, the pdflush kernel daemon runs at periodic intervals and 
writes pages back to disk. 

# ps -ef | grep pdflush 
root 186 6 0 18:04 ? 00:00:00 [pdflush] 
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Monitoring I/O 
Certain conditions occur on a system that may create I/O bottlenecks. These conditions 
may be identified by using a standard set of system monitoring tools. These tools include 
top, vmstat, iostat, and sar. There are some similarities between the output of 
these commands, but for the most part, each offers a unique set of output that provides a 
different aspect on performance. The following subsections describe conditions that 
cause I/O bottlenecks. 

Condition 1: Too Much I/O at Once 
In an ideal environment, a CPU splits a percentage of its time between user (65%), 
kernel (30%) and idle (5%). If I/O starts to cause a bottleneck on the system, a new 
condition called "Wait on I/O" (WIO) appears in CPU performance statistics. A  WIO 
condition occurs when a CPU is completely idle because all runnable processes are 
waiting on I/O. This means that all applications are in a sleep state because they are 
waiting for requests to complete in the I/O subsystem. 
 
The vmstat command provides WIO statistics in the last 4 fields of output under the 
"cpu" header. 
 
# vmstat 1 
procs -----memory----- ---swap---io---- --system--cpu---- 
r b swpd free buff cache si so bi bo in cs us sy id wa 
3 2 0 55452 9236 1739020 0 0 9352 0 2580 8771 20 24 0 57 
2 3 0 53888 9232 1740836 0 0 14860 0 2642 8954 23 25 0 52 
2 2 0 51856 9212 1742928 0 0 12688 0 2636 8487 23 25 0 52 
 
These last 4 columns provide percentages of CPU utilization for user (us), kernel (sys), 
idle (id), and WIO (wa). In the previous output, the CPU averages 50% idle waiting on 
I/O requests to complete. This means that there is 50% of the processor that is usable for 
executing applications, but no applications can execute because the kernel is waiting on 
I/O requests to complete. You can observe this in the blocked threads column (b). 

It is also worth noting that the major cause of the I/O bottleneck is disk reads due to the 
large amount of disk blocks read into memory (bi). There is no data being written out to 
disk as the blocks out (bo) column has a zero value. From this output alone, it appears 
that the system is processing a large I/O request. 

The sar command without any options also provides CPU percentages that include 
WIO (%iowait) percentages: 

# sar 1 100 
07:25:55 PM  CPU %user %nice  %system  %iowait %idle 
07:25:56 PM  all 74.26 0.00  25.74  0.00    0.00 
07:25:57 PM  all 52.00 0.00  31.00  16.00   1.00 
07:25:58 PM  all 12.87 0.00  13.86  73.27   0.00 
 
 
The sar command with the -B option provides statistics on kilobytes read (pgpgin/s) 
and written out (pgpgout/s) of  memory that may be correlated with the bi and bo 
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columns of vmstat. The sar -B command also shows MnPF (fault/s) and MPF 
statistics (majflt/s). 
 
# sar -B 1 100 
07:28:23 PM pgpgin/s pgpgout/s fault/s majflt/s 
07:28:24 PM 6653.47   463.37  1604.95  74.26 
07:28:25 PM 7448.00    96.00  2061.00  79.00 
07:28:26 PM 4190.10   118.81  723.76   30.69 
07:28:27 PM 2966.34   146.53  525.74    9.90 
07:28:28 PM 3728.00     0.00  146.00    6.00 
07:28:29 PM 5244.00   580.00 927.00   39.00 
 
There is no exact tool that can identify which application is causing the I/O read requests. 
The top tool can provide enough insight to make an educated guess. Start the top 
command with a delay of 1 second: 
 
# top -d 1 
 
Once top is running, sort the output by faults (MPF and MnPF) by typing "F" to bring up 
the sort menu and "u" to sort by faults. 
 
# top -d 1 
top - 19:45:07 up 1:40, 3 users, load average: 6.36, 5.87, 4.40 
Tasks: 119 total, 3 running, 116 sleeping, 0 stopped, 0 zombie 
Cpu(s): 5.9% us, 87.1% sy, 0.0% ni, 0.0% id, 5.9% wa, 1.0% hi, 0.0% si 
Mem: 2075672k total, 2022668k used, 53004k free, 7156k buffers 
Swap: 2031608k total, 132k used, 2031476k free, 1709372k cached 
PID USER PR  NI VIRT RES SHR   S %CPU %MEM  TIME+    nFLT COMMAND 
3069 root 5 -10 450m 303m 280m S  61.5 15.0 10:56.68 4562 vmware-vmx 
3016 root 5 -10 447m 300m 280m S  21.8 14.8 12:22.83 3978 vmware-vmx 
3494 root 5 -10 402m 255m 251m S   3.0 12.6 1:08.65  3829 vmware-vmx 
3624 root 5 -10 401m 256m 251m S   1.0 12.6 0:29.92  3747 vmware-vmx 
<snip> 
 
The previous output demonstrates that a series of VMWare process are causing the 
majority of page faults (nFLT) which would contribute to the surge of read requests seen 
in the previous commands. This surge has caused the WIO condition on the system, 
rendering the CPU idle and causing the system to appear much slower. 
 

Condition 2: Pipes Too Small  
Every I/O request to a disk takes a certain amount of time. This is due primarily to the fact 
that a disk must spin and a head must seek. The spinning of a disk is often referred to as 
"rotational delay" (RD) and the moving of the head as a "disk seek" (DS). The time it 
takes for each I/O request is calculated by adding DS and RD. A disk's RD is fixed based 
on the RPM of the drive. An RD is considered half a revolution around a disk. To 
calculate RD for a 10K RPM drive, perform the following: 

 
 
 
 
 
 
 



Linux Performance Monitoring  

Copyright 2007 Darren Hoch. All rights reserved.  32 of 47 

 

1. Divide 10000 RPM by 60 seconds (10000/60 = 166 RPS) 

2. Convert 1 of 166 to decimal (1/166 = 0.0006 seconds per Rotation) 

3. Multiply the seconds per rotation by 1000 milliseconds (6 MS per rotation) 

4. Divide the total in half (6/2 = 3 MS) or RD 

5. Add an average of 3 MS for seek time (3 MS + 3 MS = 6 MS) 

6. Add 2 MS for latency (internal transfer) (6 MS + 2 MS = 8MS) 

7. Divide 1000 MS by 8MS per I/O (1000/8 = 125 IOPS) 

Each time an application issues an I/O, it takes an average of 8MS to service that I/O on 
a 10K RPM disk. Since this is a fixed time, it is imperative that the disk be as efficient as 
possible with the time it will spend reading and writing to the disk. The amount of I/O 
requests are often measured in I/Os Per Second (IOPS). The 10K RPM disk has the 
ability to push 120 to 150 (burst) IOPS. To measure the effectiveness of IOPS, divide the 
amount of IOPS by the amount of data read or written for each I/O. 

 
Random vs Sequential I/O 
The relevance of KB per I/O depends on the workload of the system. There are 
two different types of workload categories on a system. They are sequential and 
random. 

 
Sequential I/O 

The iostat command provides information about IOPS and the amount of data 
processed during each I/O. Use the –x switch with iostat. Sequential 
workloads require large amounts of data to be read sequentially and at once. 
These include applications like enterprise databases executing large queries and 
streaming media services capturing data. With sequential workloads, the KB per 
I/O ratio should be high. Sequential workload performance relies on the ability to 
move large amounts of data as fast as possible. If each I/O costs time, it is 
imperative to get as much data out of that I/O as possible. 
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# iostat -x 1 
 
avg-cpu: %user   %nice   %sys    %idle 
   0.00     0.00    57.1 4  42.86 
 
Device:  rrqm/s wrqm/s  r/s  w/s   rsec/s   wsec/s   rkB/s   wkB/s   avgrq-sz avgqu-sz await svctm %util 
/dev/sda  0.00  12891.43 0.00 105.71 0.00 106080.00 0.00 53040.00 1003.46 1099.43 3442.43 26.49 280.00 
/dev/sda1 0.00  0.00   0.00  0.00  0.00      0.00     0.00     0.00    0.00    0.00    0.00  0.00   0.00 
/dev/sda2 0.00  12857.14 0.00 5.71 0.00  105782.86   0.00 52891.43 18512.00  559.14 780.00 490.00 280.00 
/dev/sda3 0.00  34.29  0.00  100.00 0.00  297.14     0.00 148.57       2.97  540.29 3594.57 24.00 240.00 
 
avg-cpu: %user %nice %sys %idle 
0.00 0.00 23.53 76.47 
 
Device:  rrqm/s wrqm/s  r/s   w/s  rsec/s  wsec/s   rkB/s   wkB/s   avgrq-sz avgqu-sz await svctm %util 
/dev/sda  0.00 17320.59 0.00 102.94 0.00 142305.88 0.00  71152.94    1382.40 6975.29 952.29 28.57 294.12 
/dev/sda1 0.00   0.00   0.00   0.00 0.00      0.00 0.00   0.00          0.00    0.00   0.00   0.00  0.00 
/dev/sda2 0.00 16844.12 0.00 102.94 0.00 138352.94 0.00 69176.47   1344.00  6809.71  952.29 28.57 294.12 
/dev/sda3 0.00 476.47   0.00 0.00   0.00    952.94 0.00  1976.47      0.00    165.59   0.00  0.00 276.47 

 
The way to calculate the efficiency of IOPS is to divide the reads per second 
(r/s) and writes per second (w/s) by the kilobytes read (rkB/s) and written 
(wkB/s) per second. In the above output, the amount of data written per I/O for 
/dev/sda increases during each iteration: 

53040/105 = 505KB per I/O 

71152/102 = 697KB per I/O 

Random I/O 

Random access workloads do not depend as much on size of data. They depend 
primarily on the amount of IOPS a disk can push. Web and mail servers are 
examples of random access workloads. The I/O requests are rather small. 
Random access workload relies on how many requests can be processed at 
once. Therefore, the amount of IOPS the disk can push becomes crucial. 

# iostat -x 1 
 
avg-cpu: %user %nice %sys %idle 
     2.04 0.00 97.96 0.00 
 
Device:  rrqm/s  wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util 
/dev/sda 0.00  633.67 3.06 102.31 24.49 5281.63 12.24 2640.82 288.89 73.67 113.89 27.22 50.00 
/dev/sda1 0.00   5.10  0.00 2.04  0.00  57.14   0.00   28.57   28.00  1.12  55.00 55.00 11.22 
/dev/sda2 0.00 628.57 3.06 100.27 24.49 5224.49 12.24 2612.24 321.50 72.55 121.25 30.63 50.00 
/dev/sda3 0.00   0.00  0.00  0.00 0.00   0.00  0.00  0.00       0.00  0.00   0.00  0.00  0.00 
 
avg-cpu: %user %nice %sys %idle 
           2.15 0.00 97.85 0.00 
 
Device: rrqm/s wrqm/s r/s w/s  rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util 
/dev/sda 0.00  41.94  6.45 130.98 51.61 352.69 25.81 3176.34 19.79  2.90    286.32 7.37 15.05 
/dev/sda1 0.00 0.00   0.00   0.00  0.00   0.00  0.00    0.00  0.00  0.00      0.00 0.00  0.00 
/dev/sda2 0.00 41.94  4.30 130.98 34.41 352.69 17.20 3176.34 21.18  2.90    320.00 8.24 15.05 
/dev/sda3 0.00 0.00   2.15   0.00 17.20   0.00  8.60    0.00  8.00  0.00      0.00 0.00  0.00 
 

The previous output shows that the amount of IOPS for writes stays almost the 
same as the sequential output. The difference is the actual write size per I/O: 
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2640/102 = 23KB per I/O 

3176/130 = 24KB per I/O 

Condition 3: Slow Disks 
Many disk configurations may not be a physical disk on the system. Some may be part of 
a volume group, NAS, shared drive, or SAN. It is possible to measure the latency 
between the request time and the actual service time of a device. 

Many disk configurations may not be a physical disk on the system. Some may be part of 
a volume group, NAS, shared drive, or SAN. It is possible to measure the latency 
between the request time and the actual service time of a device. 

The following output was taken from a system with Linux volume groups under extreme 
sequential I/O write access. 

# iostat -x 1 
 
<snip> 
 
avg-cpu: %user %nice %sys  %iowait %idle 
   0.50   0.00 30.94   8.19  60.37 
 
Device: rrqm/s wrqm/s r/s   w/s  rsec/s wsec/s  rkB/s  wkB/s  avgrq-sz avgqu-sz await svctm %util 
hda      0.00 2610.03 0.00 6.02   0.00 20984.62 0.00 10492.31  3485.78  8.59   315.28 56.50 34.01 
hdb      0.00 2610.03 0.00 6.02   0.00 20984.62 0.00 10492.31  3485.78  8.40   284.56 56.44 33.98 
md0      0.00   0.00  0.00 0.00   0.00     0.00 0.00     0.00     0.00  0.00     0.00  0.00  0.00 
md1      0.00   0.00  0.00 2622.74 0.00 20981.94 0.00 10490.97    8.00  0.00     0.00  0.00  0.00 
 
avg-cpu: %user %nice %sys %iowait %idle 
         0.83   0.00 59.27 4.01    35.89 
 
Device: rrqm/s wrqm/s r/s   w/s  rsec/s wsec/s rkB/s  wkB/s  avgrq-sz avgqu-sz await  svctm %util 
hda      0.00 13595.64 0.00 10.07 0.00 109197.32 0.00 54598.66 10846.93 95.15 1872.43 100.07 
100.74 
hdb      0.00 13595.64 0.00 10.40 0.00 109197.32 0.00 54598.66 10497.03 94.64 1854.52 96.84 
100.74 
md0      0.00   0.00   0.00  0.00 0.00  0.00   0.00    0.00       0.00  0.00     0.00  0.00  0.00 
md1      0.00   0.00   0.00 13649.66 0.00 109197.32 0.00 54598.66 8.00  0.00     0.00  0.00  0.00 
 
avg-cpu: %user %nice %sys %iowait %idle 
   0.34 0.00 20.94 62.31 16.42 
 
Device: rrqm/s wrqm/s r/s   w/s  rsec/s wsec/s rkB/s  wkB/s  avgrq-sz avgqu-sz await  svctm %util 
hda      0.00 3420.07 0.00 11.37 0.00 27478.26 0.00 13739.13 2416.47  158.53 2997.18 88.24 100.33 
hdb      0.00 3420.07 0.00 11.37 0.00 27478.26 0.00 13739.13 2416.47 157.97  2964.79 88.24 100.33 
md0      0.00   0.00  0.00  0.00  0.00  0.00   0.00    0.00       0.00  0.00    0.00   0.00  0.00 
md1      0.00 0.00    0.00 3434.78 0.00 27478.26 0.00 13739.13    8.00  0.00    0.00   0.00  0.00 

 

The previous iostat output monitors a RAID 1 device (/dev/md1). Notice the 
difference between the service time (svctm) and the average wait time (await). Both of 
these values are in milliseconds. The actual time it takes to service the request is minimal 
compared to the time the system spends waiting for the response. 

Since a mirror has to sync to another disk, the amount of I/O doubles. Notice in the 
following output that the disks were completely idle waiting on I/O. Even though requests 
were still being made (w/s), there was no disk activity and a large discrepancy between 
the service time and average wait time. Also notice that the disks were 100% utilized 
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even though nothing was writing. This is indicative of a complete stall waiting for the 
volume group software to catch up. 

avg-cpu: %user %nice %sys %iowait %idle 
   0.00   0.00 1.00  52.68 46.32 
 
Device: rrqm/s wrqm/s r/s  w/s   rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util 
hda      0.00  0.00   0.00 11.00 0.00   0.00   0.00  0.00   0.00   145.44 5848.03 90.94 100.03 
hdb      0.00  0.00   0.00 10.67 0.00   0.00   0.00  0.00   0.00   144.89 5872.97 93.78 100.03 
md0      0.00  0.00   0.00 0.00  0.00   0.00   0.00  0.00   0.00     0.00    0.00   0.00  0.00 
md1      0.00  0.00   0.00 0.00  0.00   0.00   0.00  0.00   0.00     0.00    0.00   0.00  0.00 
 
avg-cpu: %user %nice %sys %iowait %idle 
   0.17   0.00 0.84  49.00 50.00 
 
Device: rrqm/s wrqm/s r/s  w/s   rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util 
hda      0.00  0.00   0.00 10.96 0.00   0.00   0.00  0.00   0.00    111.83 8053.45 90.94 99.70 
hdb      0.00  0.00   0.00 10.96 0.00   0.00   0.00  0.00   0.00    111.28 8003.18 90.94 99.70 
md0      0.00  0.00   0.00 0.00  0.00   0.00   0.00  0.00   0.00      0.00    0.00  0.00  0.00 
md1      0.00  0.00   0.00 0.00  0.00   0.00   0.00  0.00   0.00      0.00    0.00  0.00  0.00 

 

This behavior can also be observed using the sar -b command. This command shows 
I/O statistics per device node number. To locate the node numbers of your devices, use 
an ls command with a -lL switch. 

# ls -lL /dev/md1 
brw-rw---- 1 root disk 9, 1 Dec 30 08:13 /dev/md1 
# ls -lL /dev/hda 
brw-rw---- 1 root disk 3, 0 Dec 30 08:13 /dev/hda 
# ls -lL /dev/hdb 
brw-rw---- 1 root disk 3, 64 Dec 30 08:13 /dev/hdb 
 

The mirror device has a major number of 9 and a minor number of 1 or 91. The other two 
disks are 3, 0 and 3, 64. Looking at the sar output, it appears that the RAID device issues 
a large amount of I/O writes to the underlying drives. The drives end up timing out trying 
to process the requests. 
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# sar -b 3 
 
<snip> 
 
04:28:14 PM dev3-0 11.11 0.00 106650.51 
04:28:14 PM dev3-64 10.10 0.00 106634.34 
04:28:14 PM dev9-0 0.00 0.00 0.00 
04:28:14 PM dev9-1 13326.26 0.00 106610.10 
 
<snip> 
 
04:28:15 PM dev3-0 9.90 0.00 0.00 
04:28:15 PM dev3-64 10.89 0.00 0.00 
04:28:15 PM dev9-0 0.00 0.00 0.00 
04:28:15 PM dev9-1 0.00 0.00 0.00 
 
<snip> 
 

Condition 4: When Virtual Memory Kills I/O 
If the system does not have enough RAM to accommodate all requests, it must start to 
use the SWAP device. Just like file system I/O, writes to the SWAP device are just as 
costly. If the system is extremely deprived of RAM, it is possible that it will create a 
paging storm to the SWAP disk. If the SWAP device is on the same file system as the 
data trying to be accessed, the system will enter into contention for the I/O paths. This 
will cause a complete performance breakdown on the system. If pages can't be read or 
written to disk, they will stay in RAM longer. If they stay in RAM longer, the kernel will 
need to free the RAM. The problem is that the I/O channels are so clogged that nothing 
can be done. This inevitably can lead to a kernel panic and crash of the system. 

The following vmstat output demonstrates a system under memory distress. It is writing 
data out to the swap device: 

 procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu---- 
 r  b    swpd   free  buff  cache   si   so    bi    bo   in cs   us sy id wa 
17  0     1250  3248 45820 1488472    30 132   992    0 2437 7657 23 50  0 23 
11  0     1376  3256 45820 1488888    57 245   416    0 2391 7173 10 90  0 0 
12  0     1582  1688 45828 1490228    63 131  1348   76 2432 7315 10 90  0 10 
12  2     3981  1848 45468 1489824   185 56   2300   68 2478 9149 15 12  0 73 
14  2     10385 2400 44484 1489732     0 87   1112   20 2515 11620 0 12  0 88 
14  2     12671 2280 43644 1488816    76 51   1812  204 2546 11407 20 45 0 35 

 

The previous output demonstrates a large amount of read requests into memory (bi). 
The requests are so many that the system is short on memory (free). This is causing 
the system to send blocks to the swap device (so) and the size of swap keeps growing 
(swpd). Also notice a large percentage of WIO time (wa). This indicates that the CPU is 
starting to slow because of I/O requests. 

To see the effect the swapping to disk is having on the system, check the swap partition 
on the drive using iostat. 
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# iostat -x 1 
 
avg-cpu: %user %nice %sys %idle 
   0.00  0.00 100.00 0.00 
 
Device: rrqm/s wrqm/s   r/s w/s rsec/s wsec/s    rkB/s    wkB/s   avgrq-sz  avgqu-sz   await svctm %util 
/dev/sda  0.00  1766.67 4866.67 1700.00 38933.33 31200.00 19466.67 15600.00 10.68    6526.67 100.56 5.08 
3333.33 
/dev/sda1 0.00 933.33   0.00    0.00     0.00  7733.33     0.00  3866.67  0.00 20.00 2145.07 7.37 200.00 
/dev/sda2 0.00 0.00  4833.33    0.00 38666.67   533.33  19333.33  266.67  8.11 373.33 8.07   6.90  87.00 
/dev/sda3 0.00 833.33  33.33 1700.00   266.67 22933.33    133.33 11466.67   13.38   6133.33 358.46 11.35 
1966.67 

In the previous example, both the swap device (/dev/sda1) and the file system device 
(/dev/sda3) are contending for I/O. Both have high amounts of write requests per 
second (w/s) and high wait time (await) to low service time ratios (svctm). This 
indicates that there is contention between the two partitions, causing both to under 
perform. 

Conclusion 
I/O performance monitoring consists of the following actions: 

• Any time the CPU is waiting on I/O, the disks are overloaded. 

• Calculate the amount of IOPS your disks can sustain. 

• Determine whether your applications require random or sequential 
disk access. 

• Monitor slow disks by comparing wait times and service times. 

• Monitor the swap and file system partitions to make sure that virtual 
memory is not contending for filesystem I/O. 
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Introducing Network Monitoring 
Out of all the subsyetms to monitor, networking is the hardest to monitor. This is due 
primarily to the fact that the network is abstract. There are many factors that are beyond 
a system’s control when it comes to monitoring and performance. These factors include 
latency, collisions, congestion and packet corruption to name a few. 

This section focuses on how to check the performance of Ethernet, IP and TCP. 

Ethernet Configuration Settings 
Unless explicitly changed, all Ethernet networks are auto negotiated for speed. 
The benefit of this is largely historical when there were multiple devices on a 
network that could be different speeds and duplexes. 

Most enterprise Ethernet networks run at either 100 or 1000BaseTX. Use  
ethtool to ensure that a specific system is synced at this speed. 

In the following example, a system with a 100BaseTX card is running auto 
negotiated in 10BaseT. 

# ethtool eth0 
Settings for eth0: 
        Supported ports: [ TP MII ] 
        Supported link modes:   10baseT/Half 10baseT/Full  
                                100baseT/Half 100baseT/Full  
        Supports auto-negotiation: Yes 
        Advertised link modes:  10baseT/Half 10baseT/Full  
                                100baseT/Half 100baseT/Full  
        Advertised auto-negotiation: Yes 
        Speed: 10Mb/s 
        Duplex: Half 
        Port: MII 
        PHYAD: 32 
        Transceiver: internal 
        Auto-negotiation: on 
        Supports Wake-on: pumbg 
        Wake-on: d 
        Current message level: 0x00000007 (7) 
        Link detected: yes 
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The following example demonstrates how to force this card into 100BaseTX: 

# ethtool -s eth0 speed 100 duplex full autoneg off 
# ethtool eth0 
Settings for eth0: 
        Supported ports: [ TP MII ] 
        Supported link modes:   10baseT/Half 10baseT/Full  
                                100baseT/Half 100baseT/Full  
        Supports auto-negotiation: Yes 
        Advertised link modes:  10baseT/Half 10baseT/Full  
                                100baseT/Half 100baseT/Full  
        Advertised auto-negotiation: No 
        Speed: 100Mb/s 
        Duplex: Full 
        Port: MII 
        PHYAD: 32 
        Transceiver: internal 
        Auto-negotiation: off 
        Supports Wake-on: pumbg 
        Wake-on: d 
        Current message level: 0x00000007 (7) 
        Link detected: yes 
 

Just because an interface is now synchronized does not mean it is still having 
bandwidth problems. The iptraf utility (http://iptraf.seul.org) provides 
a dashboard of throughput per Ethernet interface. 

# iptraf –d eth0 
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Figure 1: Monitoring for Network Throughput 

 

Monitoring for Error Conditions 
The most common kind of error condition checked is for is packet collisions. Most 
enterprise networks are in a switched environment, practically eliminating 
collisions. However, with the increased usage of networked based services, there 
are other conditions that may arise. These conditions include dropped frames, 
backlogged buffers, and overutilized NIC cards. 

Under extreme network loads, the sar command provides a report on all 
possible error types on a network. 

# sar -n FULL  5 100 
Linux 2.6.9-55.ELsmp (sapulpa)  06/23/2007 
 
11:44:32 AM     IFACE   rxpck/s   txpck/s   rxbyt/s   txbyt/s   rxcmp/s   txcmp/s  rxmcst/s 
11:44:37 AM        lo      6.00      6.00    424.40    424.40      0.00      0.00      0.00 
11:44:37 AM      eth0      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
11:44:37 AM      sit0      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
 
11:44:32 AM     IFACE   rxerr/s   txerr/s    coll/s  rxdrop/s  txdrop/s  txcarr/s  rxfram/s  rxfifo/s  txfifo/s 
11:44:37 AM        lo      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
11:44:37 AM      eth0      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
11:44:37 AM      sit0      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
 
11:44:32 AM    totsck    tcpsck    udpsck    rawsck   ip-frag 
11:44:37 AM       297        79         8         0         0 
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Table 3: Types of Network Errors 

Field Description 
rxerr/s rate of receive errors 
tcerr/s rate of transmit errors 
coll/s rate of collisions 
rxdrop/s received frames dropped due to kernel buffer shortage 

txdrop/s 
trasnmitted frames dropped due to kernel buffer 
shortage 

txcarr/s carrier errors 
rxfram/s frame alignement errors 
rxfifo/s receiving FIFO errors 
tcfifo/s trasmitted FIFO errors 
 

Monitoring Traffic Types 
Certain systems are designed to serve different traffic. For instance, a web 
server serves traffic over port 80 and a mail server over port 25. The iptraf tool 
determines displays the highest volume of traffic per TCP port. 

Figure 2: Monitoring TCP Traffic per Port 
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Conclusion 
To monitor network performance, perform the following actions: 

• Check to make sure all Ethernet interfaces are running at proper 
rates. 

• Check total throughput per network interface and be sure it is inline 
with network speeds. 

• Monitor network traffic types to ensure that the appropriate traffic 
has precedence on the system. 
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Performance Monitoring Step by Step – Case Study 
In the following scenario, an end user calls support and complains that the reporting 
module of a web user interface is taking 20 minutes to generate a report when it should 
take 15 seconds. 

System Configuration 

• RedHat Enterprise Linux 3 update 7 

• Dell 1850 Dual Core Xenon Processors, 2 GB RAM, 75GB 15K 
Drives 

• Custom LAMP software stack 

Performance Analysis Procedure 
1. Start with the output of vmstat for a dashboard of system performance. 

# vmstat 1 10 
procs                      memory      swap          io     system         cpu 
 r  b   swpd   free   buff  cache   si   so    bi    bo   in    cs us sy id wa 
 1  0 249844  19144  18532 1221212    0    0     7     3   22    17 25  8 17 18 
 0  1 249844  17828  18528 1222696    0    0 40448     8 1384  1138 13  7 65 14 
 0  1 249844  18004  18528 1222756    0    0 13568     4  623   534  3  4 56 37 
 2  0 249844  17840  18528 1223200    0    0 35200     0 1285  1017 17  7 56 20 
 1  0 249844  22488  18528 1218608    0    0 38656     0 1294  1034 17  7 58 18 
 0  1 249844  21228  18544 1219908    0    0 13696   484  609   559  5  3 54 38 
 0  1 249844  17752  18544 1223376    0    0 36224     4 1469  1035 10  6 67 17 
 1  1 249844  17856  18544 1208520    0    0 28724     0  950   941 33 12 49  7 
 1  0 249844  17748  18544 1222468    0    0 40968     8 1266  1164 17  9 59 16 
 1  0 249844  17912  18544 1222572    0    0 41344    12 1237  1080 13  8 65 13 
 

Key Data Points 

• There are no issues with memory shortages because there is no 
sustained swapping activity (si and so). Although the free 
memory is shrinking the swpd column does not change. 

• There are no serious issues with the CPU. Although there is a bit of 
a run queue, the processor is still over 50% idle. 

• There are a high amount of context switches (cs) and blocks being 
read in (bo). 

• The CPU is stalled at an average of 20% waiting on I/O (wa). 
 
Conclusion: A preliminary analysis points to an I/O bottleneck. 
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2. Use iostat to determine from where the read requests are being generated. 

 
# iostat -x 1 
Linux 2.4.21-40.ELsmp (mail.example.com)  03/26/2007 
 
avg-cpu:  %user   %nice    %sys   %idle 
          30.00    0.00    9.33   60.67 
 
Device:    rrqm/s wrqm/s   r/s   w/s  rsec/s  wsec/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util 
/dev/sda  7929.01  30.34 1180.91 14.23 7929.01  357.84  3964.50   178.92     6.93     0.39    0.03   0.06   6.69 
/dev/sda1    2.67   5.46  0.40  1.76   24.62   57.77    12.31    28.88    38.11     0.06    2.78   1.77   0.38 
/dev/sda2    0.00   0.30  0.07  0.02    0.57    2.57     0.29     1.28    32.86     0.00    3.81   2.64   0.03 
/dev/sda3 7929.01  24.58 1180.44 12.45 7929.01  297.50  3964.50   148.75     6.90     0.32    0.03   0.06   6.68 
 
avg-cpu:  %user   %nice    %sys   %idle 
           9.50    0.00   10.68   79.82 
 
Device:    rrqm/s wrqm/s   r/s   w/s  rsec/s  wsec/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util 
/dev/sda     0.00   0.00 1195.24  0.00    0.00    0.00     0.00     0.00     0.00    43.69    3.60   0.99 117.86 
/dev/sda1    0.00   0.00  0.00  0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00 
/dev/sda2    0.00   0.00  0.00  0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00 
/dev/sda3    0.00   0.00 1195.24  0.00    0.00    0.00     0.00     0.00     0.00    43.69    3.60   0.99 117.86 
 
avg-cpu:  %user   %nice    %sys   %idle 
           9.23    0.00   10.55   79.22 
 
Device:    rrqm/s wrqm/s   r/s   w/s  rsec/s  wsec/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util 
/dev/sda     0.00   0.00 1200.37  0.00    0.00    0.00     0.00     0.00     0.00    41.65    2.12   0.99 112.51 
/dev/sda1    0.00   0.00  0.00  0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00 
/dev/sda2    0.00   0.00  0.00  0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00 
/dev/sda3    0.00   0.00 1200.37  0.00    0.00    0.00     0.00     0.00     0.00    41.65    2.12   0.99 112.51 
 

Key Data Points 

• The only active partition is the /dev/sda3 partition. All other partitions 
are completely idle. 

• There are roughly 1200 read IOPS (r/s) on a disk that supports 
around 200 IOPS. 

• Over the course of two seconds, nothing was actually read to disk 
(rkB/s). This correlates with the high amount of wait I/O from the 
vmstat. 

• The high amount of read IOPS correlates with the high amount of 
context switches in the vmstat. There are multiple read system 
calls issued. 

Conclusion: An application is inundating the system with more read requests than 
the I/O subsystem can handle.  
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3. Using top, determine what application is most active on the system 

# top -d 1 
 11:46:11  up 3 days, 19:13,  1 user,  load average: 1.72, 1.87, 1.80 
176 processes: 174 sleeping, 2 running, 0 zombie, 0 stopped 
CPU states:  cpu    user    nice  system    irq  softirq  iowait    idle 
           total   12.8%    0.0%    4.6%   0.2%     0.2%   18.7%   63.2% 
           cpu00   23.3%    0.0%    7.7%   0.0%     0.0%   36.8%   32.0% 
           cpu01   28.4%    0.0%   10.7%   0.0%     0.0%   38.2%   22.5% 
           cpu02    0.0%    0.0%    0.0%   0.9%     0.9%    0.0%   98.0% 
           cpu03    0.0%    0.0%    0.0%   0.0%     0.0%    0.0%  100.0% 
Mem:  2055244k av, 2032692k used,   22552k free,  0k shrd,   18256k buff 
                   1216212k actv,  513216k in_d,   25520k in_c 
Swap: 4192956k av,  249844k used, 3943112k free                 1218304k cached  
 
  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND                          
14939 mysql     25   0  379M 224M 1117 R  38.2 25.7% 15:17.78 mysqld    
 4023 root      15   0  2120  972  784 R  2.0  0.3   0:00.06 top     
    1 root      15   0  2008  688  592 S  0.0  0.2   0:01.30 init                
    2 root      34  19     0    0    0 S  0.0  0.0   0:22.59 ksoftirqd/0         
    3 root      RT   0     0    0    0 S  0.0  0.0   0:00.00 watchdog/0          
    4 root      10  -5     0    0    0 S  0.0  0.0   0:00.05 events/0            
 

Key Data Points 

• The mysql process seems to be consuming the most resources. 
The rest of the system is completely idle. 

• There is a wait on I/O reported by top (wa) which can be correlated 
with the wio field in vmstat. 

Conclusion: It appears the mysql is the only process that is requesting resources 
from the system, therefore it is probably the one generating the requests. 

 
4. Now that MySQL has been identified as generating the read requests, use 

strace to determine what is the nature of the read requests. 

# strace -p 14939 
 
Process 14939 attached - interrupt to quit 
read(29, "\3\1\237\1\366\337\1\222%\4\2\0\0\0\0\0012P/d", 20) = 20 
read(29, "ata1/strongmail/log/strongmail-d"..., 399) = 399 
_llseek(29, 2877621036, [2877621036], SEEK_SET) = 0 
read(29, "\1\1\241\366\337\1\223%\4\2\0\0\0\0\0012P/da", 20) = 20 
read(29, "ta1/strongmail/log/strongmail-de"..., 400) = 400 
_llseek(29, 2877621456, [2877621456], SEEK_SET) = 0 
read(29, "\1\1\235\366\337\1\224%\4\2\0\0\0\0\0012P/da", 20) = 20 
read(29, "ta1/strongmail/log/strongmail-de"..., 396) = 396 
_llseek(29, 2877621872, [2877621872], SEEK_SET) = 0 
read(29, "\1\1\245\366\337\1\225%\4\2\0\0\0\0\0012P/da", 20) = 20 
read(29, "ta1/strongmail/log/strongmail-de"..., 404) = 404 
_llseek(29, 2877622296, [2877622296], SEEK_SET) = 0 
read(29, "\3\1\236\2\366\337\1\226%\4\2\0\0\0\0\0012P/d", 20) = 20 
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Key Data Points 

• There are a large amount of reads followed by seeks indicating that 
the mysql application is generating random I/O. 

• There appears to be a specific query that is requesting the read 
operations. 

Conclusion: The mysql application is executing some kind of read query that is 
generating all of the read IOPS. 

5. Using the mysqladmin command, report on which queries are both dominating 
the system and taking the longest to run. 

# ./mysqladmin -pstrongmail processlist 
 
+----+------+-----------+------------+---------+------+----------+---------------------------------------- 
| Id | User | Host      | db         | Command | Time | State    | Info                                                 
+----+------+-----------+------------+---------+------+----------+---------------------------------------- 
| 1  | root | localhost | strongmail | Sleep   | 10  |          |                                                      
| 2  | root | localhost | strongmail | Sleep   | 8    |          |                                                      
| 3  | root | localhost | root       | Query   | 94   | Updating | update `failures` set 
`update_datasource`='Y' where database_id='32' and  update_datasource='N' and  | 
| 14 | root | localhost |            | Query   | 0    |          | show processlist        

 

Key Data Points 

• The MySQL database seems to be constantly running an update 
query to a table called failures. 

• In order to conduct the update, the database must index the entire 
table. 

Conclusion: An update query issued by MySQL is attempting to index an entire table 
of data. The amount of read requests generated by this query is devastating system 
performance. 

Performance Follow-up 
The performance information was handed to an application developer who 
analyzed the PHP code. The developer found a sub-optimal implementation in 
the code. The specific query assumed that the failures database would only scale 
to 100K records. The specific database in question contained 4 million records. 
As a result, the query could not scale to the database size. Any other query (such 
as report generation) was stuck behind the update query. 
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