

Linux Performance Monitoring

Darren Hoch

Services Architect – StrongMail Systems, Inc.

Release 2.3.4 - February 2005

Linux Performance Monitoring

PUBLISHED BY:
Darren Hoch
dhoch@strongmail.com
http://www.ufsdump.org

Copyright 2007 Darren Hoch. All rights reserved.

No parts of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the Darren Hoch.

StrongMail is a registered trademark of StrongMail Systems, Inc. All other trademarks are the property of
their respective owners.

http://www.strongmailsystems.com

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 4 of 47

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 5 of 47

Table of Contents
Performance Monitoring Introduction ...7

Determining Application Type... 7

Determining Baseline Statistics .. 8

Installing Monitoring Tools...9

Installing the Monitoring Packages... 9

Introducing the CPU..10

Context Switches .. 10

The Run Queue .. 11

CPU Utilization.. 11

Time Slicing .. 11

Static and Dynamic Priorities.. 12

CPU Performance Monitoring ..15

Using the vmstat Utility ... 15

Conclusion .. 21

Introducing Virtual Memory..22

Virtual Memory Pages .. 22

Virtual Size (VSZ) and Resident Set Size (RSS).. 22

Kernel Memory Paging..23

The Page Frame Reclaim Algorithm (PFRA) ... 23

Kernel Paging with pdflush ... 24

Case Study: Large Inbound I/O .. 25

Conclusion .. 26

Introducing I/O Monitoring ...27

Reading and Writing Data - Memory Pages ... 27

Major and Minor Page Faults.. 27

The File Buffer Cache... 28

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 6 of 47

Types of Memory Pages... 29

Writing Data Pages Back to Disk.. 29

Monitoring I/O ..30

Condition 1: Too Much I/O at Once .. 30

Condition 2: Pipes Too Small ... 31

Random vs Sequential I/O.. 32

Condition 3: Slow Disks .. 34

Condition 4: When Virtual Memory Kills I/O ... 36

Conclusion .. 37

Introducing Network Monitoring ..38

Ethernet Configuration Settings.. 38

Monitoring for Error Conditions... 40

Monitoring Traffic Types ... 41

Conclusion .. 42

Performance Monitoring Step by Step – Case Study.....................................43

Performance Analysis Procedure ... 43

Performance Follow-up... 46

References ...47

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 7 of 47

Performance Monitoring Introduction
Performance tuning is the process of finding bottlenecks in a system and tuning the
operating system to eliminate these bottlenecks. Many administrators believe that
performance tuning can be a “cook book” approach, which is to say that setting some
parameters in the kernel will simply solve a problem. This is not the case. Performance
tuning is about achieving balance between the different sub-systems of an OS. These
sub-systems include:

• CPU

• Memory

• IO

• Network
These sub-systems are all highly dependent on each other. Any one of them with high
utilization can easily cause problems in the other. For example:

• large amounts of page-in IO requests can fill the memory queues

• full gigabit throughput on an Ethernet controller may consume a
CPU

• a CPU may be consumed attempting to maintain free memory
queues

• a large number of disk write requests from memory may consume a
CPU and IO channels

In order to apply changes to tune a system, the location of the bottleneck must be
located. Although one sub-system appears to be causing the problems, it may be as a
result of overload on another sub-system.

Determining Application Type
In order to understand where to start looking for tuning bottlenecks, it is first
important to understand the behavior of the system under analysis. The
application stack of any system is often broken down into two types:

• IO Bound – An IO bound application requires heavy use of memory
and the underlying storage system. This is due to the fact that an IO
bound application is processing (in memory) large amounts of data.
An IO bound application does not require much of the CPU or
network (unless the storage system is on a network). IO bound
applications use CPU resources to make IO requests and then often
go into a sleep state. Database applications are often considered IO
bound applications.

• CPU Bound – A CPU bound application requires heavy use of the
CPU. CPU bound applications require the CPU for batch
processing and/or mathematical calculations. High volume web
servers, mail servers, and any kind of rendering server are often
considered CPU bound applications.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 8 of 47

Determining Baseline Statistics
System utilization is contingent on administrator expectations and system
specifications. The only way to understand if a system is having performance
issues is to understand what is expected of the system. What kind of
performance should be expected and what do those numbers look like? The only
way to establish this is to create a baseline. Statistics must be available for a
system under acceptable performance so it can be compared later against
unacceptable performance.

In the following example, a baseline snapshot of system performance is
compared against a snapshot of the system under heavy utilization.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 1 0 138592 17932 126272 214244 0 0 1 18 109 19 2 1 1 96
 0 0 138592 17932 126272 214244 0 0 0 0 105 46 0 1 0 99
 0 0 138592 17932 126272 214244 0 0 0 0 198 62 40 14 0 45
 0 0 138592 17932 126272 214244 0 0 0 0 117 49 0 0 0 100
 0 0 138592 17924 126272 214244 0 0 0 176 220 938 3 4 13 80
 0 0 138592 17924 126272 214244 0 0 0 0 358 1522 8 17 0 75
 1 0 138592 17924 126272 214244 0 0 0 0 368 1447 4 24 0 72
 0 0 138592 17924 126272 214244 0 0 0 0 352 1277 9 12 0 79

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 2 0 145940 17752 118600 215592 0 1 1 18 109 19 2 1 1 96
 2 0 145940 15856 118604 215652 0 0 0 468 789 108 86 14 0 0
 3 0 146208 13884 118600 214640 0 360 0 360 498 71 91 9 0 0
 2 0 146388 13764 118600 213788 0 340 0 340 672 41 87 13 0 0
 2 0 147092 13788 118600 212452 0 740 0 1324 620 61 92 8 0 0
 2 0 147360 13848 118600 211580 0 720 0 720 690 41 96 4 0 0
 2 0 147912 13744 118192 210592 0 720 0 720 605 44 95 5 0 0
 2 0 148452 13900 118192 209260 0 372 0 372 639 45 81 19 0 0
 2 0 149132 13692 117824 208412 0 372 0 372 457 47 90 10 0 0

Just by looking at the numbers in the last column (id) which represent idle time,
we can see that under baseline conditions, the CPU is idle for 79% - 100% of the
time. In the second output, we can see that the system is 100% utilized and not
idle. What needs to be determined is whether or not the system at CPU utilization
is managing.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 9 of 47

Installing Monitoring Tools
Most *nix systems ship with a series of standard monitoring commands. These
monitoring commands have been a part of *nix since its inception. Linux provides these
monitoring tools as part of the base installation or add-ons. Ultimately, there are
packages available for most distributions with these tools. Although there are multiple
open source and 3rd party monitoring tools, the goal of this paper is to use tools included
with a Linux distribution.

This paper describes how to monitor performance using the following tools.

Figure 1: Performance Monitoring Tools

Tool Description Base Repository
vmstat all purpose performance tool yes yes
mpstat provides statistics per CPU no yes
sar all purpose performance monitoring tool no yes
iostat provides disk statistics no yes
netstat provides network statistics yes yes
dstat monitoring statistics aggregator no in most distributions
iptraf traffic monitoring dashboard no yes
ethtool reports on Ethernet interface configuration yes yes

Installing the Monitoring Packages
The previously mentioned tools ship with most distributions, but are not installed
as part of the base. The tools can be selected as an additional package during
install or added later. The following example demonstrates how to install all the
previously mentioned tools for the Fedora™ and CentOS distributions.

yum install sysstat
yum install iptraf
yum install dstat

With the exception of dstat and iptraf, the other tools have periodically
contained bugs in their counters. The type of bug and patch fix is distro dependent.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 10 of 47

Introducing the CPU
The utilization of a CPU is largely dependent on what resource is attempting to access it.
The kernel has a scheduler that is responsible for scheduling two kinds of resources:
threads (single or multi) and interrupts. The scheduler gives different priorities to the
different resources. The following list outlines the priorities from highest to lowest:

• Hardware Interrupts – These are requests made by hardware on
the system to process data. For example, a disk may signal an
interrupt when it has completed and IO transaction or a NIC may
signal that a packet has been received.

• Soft Interrupts – These are kernel software interrupts that have to
do with maintenance of the kernel. For example, the kernel clock
tick thread is a soft interrupt. It checks to make sure a process has
not passed its allotted time on a processor.

• Real Time Threads – Real time threads have more priority than the
kernel itself. A real time process may come on the CPU and
preempt (or “kick off) the kernel. The Linux 2.4 kernel is NOT a fully
preemptable kernel, making it not ideal for real time application
programming.

• Kernel Threads – All kernel processing is handled at this level of
priority.

• User Threads – This space is often referred to as “userland”. All
software applications run in the user space. This space has the
lowest priority in the kernel scheduling mechanism.

In order to understand how the kernel manages these different resources, a few key
concepts need to be introduced. The following sections introduce context switches, run
queues, and utilization.

Context Switches
Most modern processors can only run one process (single threaded) or thread at
time. The n-way Hyper threaded processors have the ability to run n threads at a
time. Still, the Linux kernel views each processor core on a dual core chip as an
independent processor. For example, a system with one dual core processor is
reported as two individual processors by the Linux kernel.

A standard Linux kernel can run anywhere from 50 to 50,000 process threads at
once. With only one CPU, the kernel has to schedule and balance these process
threads. Each thread has an allotted time quantum to spend on the processor.
Once a thread has either passed the time quantum or has been preempted by
something with a higher priority (a hardware interrupt, for example), that thread is
place back into a queue while the higher priority thread is placed on the
processor. This switching of threads is referred to as a context switch.

Every time the kernel conducts a context switch, resources are devoted to
moving that thread off of the CPU registers and into a queue. The higher the
volume of context switches on a system, the more work the kernel has to do in
order to manage the scheduling of processes.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 11 of 47

The Run Queue
Each CPU maintains a run queue of threads. Ideally, the scheduler should be
constantly running and executing threads. Process threads are either in a sleep
state (blocked and waiting on IO) or they are runnable. If the CPU sub-system is
heavily utilized, then it is possible that the kernel scheduler can’t keep up with the
demand of the system. As a result, runnable processes start to fill up a run
queue. The larger the run queue, the longer it will take for process threads to
execute.

A very popular term called “load” is often used to describe the state of the run
queue. The system load is a combination of the amount of process threads
currently executing along with the amount of threads in the CPU run queue. If
two threads were executing on a dual core system and 4 were in the run queue,
then the load would be 6. Utilities such as top report load averages over the
course of 1, 5, and 15 minutes.

CPU Utilization
CPU utilization is defined as the percentage of usage of a CPU. How a CPU is
utilized is an important metric for measuring system. Most performance
monitoring tools categorize CPU utilization into the following categories:

• User Time – The percentage of time a CPU spends executing
process threads in the user space.

• System Time – The percentage of time the CPU spends executing
kernel threads and interrupts.

• Wait IO – The percentage of time a CPU spends idle because ALL
process threads are blocked waiting for IO requests to complete.

• Idle – The percentage of time a processor spends in a completely
idle state.

Time Slicing
The timeslice is the numeric value that represents how long a task can run until it
is preempted. The scheduler policy must dictate a default timeslice, which is not
simple. A timeslice that is too long will cause the system to have poor interactive
performance; the system will no longer feel as if applications are being
concurrently executed. A timeslice that is too short will cause significant amounts
of processor time to be wasted on the overhead of switching processes, as a
significant percentage of the system's time will be spent switching from one
process with a short timeslice to the next. Furthermore, the conflicting goals of
I/O-bound versus processor-bound processes again arise; I/O-bound processes
do not need longer timeslices, whereas processor-bound processes crave long
timeslices (to keep their caches hot, for example).

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 12 of 47

Static and Dynamic Priorities
The kernel scheduler assigns a default priority to each process. Processes with
higher priorities run before processes with lower priorities. The nice command is
used to modify the kernel scheduler assigned priorities by either favoring a
processor more or less. The nice command takes a range of -20 (highest) to 19
(lowest).

The kernel scheduler employs a reward and penalty system to processes and
how they use their allowed time slice. In addition to the default priorities, the
kernel will either raise (reward) or lower (punish) the priority by 5. The bonus is
calculated based on the amount of time a process spends in sleep state.

I/O bound processes spend most of their time in sleep state and as a result, they
are rewarded by the scheduler.

CPU bound processes constantly use their time slice and are often penalized by
the scheduler.

In the event that both a CPU bound and I/O bound process run on the same
system, the I/O bound performance will stay the same while the CPU bound
process will lose performance due to constant preemption by the I/O process.

The ps command displays the priorities of a given process:

ps -eo pid,class,ni,pri,psr,comm | more
 PID CLS NI PRI PSR COMMAND
 1 TS 0 24 0 init
 2 TS 19 5 0 ksoftirqd/0
 3 FF - 139 0 watchdog/0
 4 TS -5 29 0 events/0
 5 TS -5 29 0 khelper
 6 TS -5 28 0 kthread
 9 TS -5 27 0 kblockd/0
 10 TS -5 19 0 kacpid
 85 TS -5 19 0 cqueue/0
 88 TS -5 29 0 khubd
 90 TS -5 29 0 kseriod

Static and dynamic prioritization is new to the kernel 2.6.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 13 of 47

The following ps output shows the penalization in priority of a CPU intensive
process called cpu-hog.

term1# ./cpu-hog

term2# while :; do ps -eo pid,ni,pri,pcpu,comm | egrep
'hog|PRI'; sleep 1; done
 PID NI PRI %CPU COMMAND
22855 0 20 84.5 cpu-hog
 PID NI PRI %CPU COMMAND
22855 0 18 89.6 cpu-hog
 PID NI PRI %CPU COMMAND
22855 0 15 92.2 cpu-hog
 PID NI PRI %CPU COMMAND
22855 0 15 93.8 cpu-hog

By applying a nice value, we can further lower (show less favor) to the cpu-
hog process. The kernel scheduler penalizes 5 and an additional 7 points via the
nice value.

term1# nice –n 7 ./cpu-hog
while :; do ps -eo pid,ni,pri,pcpu,comm | egrep 'hog|PRI';
sleep 1; done
 PID NI PRI %CPU COMMAND
22917 20 7 0.0 cpu-hog
 PID NI PRI %CPU COMMAND
22917 15 5 98 cpu-hog
 PID NI PRI %CPU COMMAND
22917 12 3 87.2 cpu-hog
 PID NI PRI %CPU COMMAND
22917 9 0 98.8 cpu-hog
 PID NI PRI %CPU COMMAND
22917 8 0 100 cpu-hog
 PID NI PRI %CPU COMMAND
22917 8 0 97.6 cpu-hog

The following ps output tracks the find command. The find command is a heavy
I/O bound process. It does not consume all of its timeslice, but rather it often
goes into a sleep state. As a result, it is rewarded over time.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 14 of 47

term1# find /

term2# while :; do ps -eo pid,ni,pri,pcpu,comm | egrep
'find|PRI'; sleep 1; done
 PID NI PRI %CPU COMMAND
23101 0 20 0.0 find
 PID NI PRI %CPU COMMAND
23101 0 21 4.0 find
 PID NI PRI %CPU COMMAND
23101 0 23 3.5 find
 PID NI PRI %CPU COMMAND
23101 0 23 4.3 find
 PID NI PRI %CPU COMMAND
23101 0 23 4.2 find
 PID NI PRI %CPU COMMAND
23101 0 23 4.4 find

When run together, the I/O process is gradually rewarded and the CPU process
penalized. The processor is also preempted more frequently, resulting in less
available CPU cycles.

while :; do ps -eo pid,ni,pri,pcpu,comm | egrep 'find|hog';
sleep 1; done
23675 0 20 70.9 cpu-hog
23676 0 20 5.6 find
23675 0 20 69.9 cpu-hog
23676 0 21 5.6 find
23675 0 20 70.6 cpu-hog
23676 0 23 5.8 find
23675 0 19 71.2 cpu-hog
23676 0 23 6.0 find
23675 0 19 71.8 cpu-hog
23676 0 23 6.1 find
23675 0 18 72.8 cpu-hog
23676 0 23 6.2 find
23675 0 16 73.2 cpu-hog
23676 0 23 6.6 find
23675 0 14 73.9 cpu-hog

The kernel scheduling algorithm was completely rewritten in kernel 2.6 to be much
more effective. Dubbed the “0(1)” scheduler, it has significant performance
enhancements over the kernel 2.4 scheduler.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 15 of 47

CPU Performance Monitoring
Understanding how well a CPU is performing is a matter of interpreting run queue,
utilization, and context switching performance. As mentioned earlier, performance is all
relative to baseline statistics. There are, however, some general performance
expectations on any system. These expectations include:

• Run Queues – A run queue should have no more than 1-3 threads
queued per processor. For example, a dual processor system
should not have more than 6 threads in the run queue.

• CPU Utilization – If a CPU is fully utilized, then the following
balance of utilization should be achieved.
 65% – 70% User Time
 30% - 35% System Time
 0% - 5% Idle Time

• Context Switches – The amount of context switches is directly
relevant to CPU utilization. A high amount of context switching is
acceptable if CPU utilization stays within the previously mentioned
balance

There are many tools that are available for Linux that measure these statistics. The first
two tools examined will be vmstat and top.

Using the vmstat Utility
The vmstat utility provides a good low-overhead view of system performance.
Because vmstat is such a low-overhead tool, it is practical to keep it running on
a console even under a very heavily loaded server were you need to monitor the
health of a system at a glance. The utility runs in two modes: average and
sample mode. The sample mode will measure statistics over a specified interval.
This mode is the most useful when understanding performance under a
sustained load. The following example demonstrates vmstat running at 1
second intervals.

vmstat 1
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 0 104300 16800 95328 72200 0 0 5 26 7 14 4 1 95 0
 0 0 104300 16800 95328 72200 0 0 0 24 1021 64 1 1 98 0
 0 0 104300 16800 95328 72200 0 0 0 0 1009 59 1 1 98 0

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 16 of 47

The relevant fields in the output are as follows:

Table 1: The vmstat CPU statistics

Field Description

r
The amount of threads in the run queue. These are threads that are runnable,
but the CPU is not available to execute them.

b This is the number of processes blocked and waiting on IO requests to finish.
in This is the number of interrupts being processed.
cs This is the number of context switches currently happening on the system.
us This is the percentage of user CPU utilization.
sys This is the percentage of kernel and interrupts utilization.

wa
This is the percentage of idle processor time due to the fact that ALL runnable
threads are blocked waiting on IO.

id This is the percentage of time that the CPU is completely idle.

Using the dstat Utility

The dstat utility provides the ability to condense the output of vmstat down to
specific CPU related fields.

dstat -cip 1
----total-cpu-usage---- ----interrupts--- ---procs---
usr sys idl wai hiq siq| 15 169 185 |run blk new
 6 1 91 2 0 0| 12 0 13 | 0 0 0
 1 0 99 0 0 0| 0 0 6 | 0 0 0
 0 0 100 0 0 0| 18 0 2 | 0 0 0
 0 0 100 0 0 0| 0 0 3 | 0 0 0

One off the benefits of dstat over vmstat is that dstat provides interrupts per
device. The first line of the dstat output for interrupts displays an interrupt
number associated with a device. The interrupt number may be reconciled via
the /proc/interrupts file.

cat /proc/interrupts
 CPU0
 0: 1277238713 IO-APIC-edge timer
 6: 5 IO-APIC-edge floppy
 7: 0 IO-APIC-edge parport0
 8: 1 IO-APIC-edge rtc
 9: 1 IO-APIC-level acpi
 14: 6011913 IO-APIC-edge ide0
 15: 15761438 IO-APIC-edge ide1
169: 26 IO-APIC-level Intel 82801BA-ICH2
185: 16785489 IO-APIC-level eth1
193: 0 IO-APIC-level uhci_hcd:usb1

The following example demonstrates the difference between a system with an
idle NIC card and a utilized NIC card (eth1).

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 17 of 47

dstat -cip 1
----total-cpu-usage---- ----interrupts--- ---procs---
usr sys idl wai hiq siq| 15 169 185 |run blk new
 6 1 91 2 0 0| 12 0 13 | 0 0 0
 0 0 100 0 0 0| 15 0 6 | 0 0 0
 0 0 100 0 0 0| 3 0 3 | 0 0 0
 1 0 99 0 0 0| 0 0 3 | 0 0 0
 0 0 100 0 0 0| 18 0 2 | 0 0 0
 0 0 100 0 0 0| 0 0 4 | 0 0 0

while :
> do wget http://www.litemail.org/index.html
> done

dstat –cip 1
----total-cpu-usage---- ----interrupts--- ---procs---
usr sys idl wai hiq siq| 15 169 185 |run blk new
 1 2 97 0 0 0| 18 0 67 | 0 0 2
 2 3 95 0 0 0| 0 0 91 | 0 0 3
 5 3 90 0 0 2| 18 0 1064 | 0 0 4
 5 3 91 0 0 1| 0 0 400 | 0 0 5
 3 3 93 0 0 1| 18 0 515 | 0 0 5
 2 3 94 1 0 0| 0 0 103 | 0 0 4

The eth1 device has an id of 185. The amount of interrupts generated by the
wget command utilized an average of 8% of the CPU as the idle time decreased
from an average of 99% idle to 92% idle.

Case Study: Application Spike

In the following example, a system is experiencing CPU performance spikes,
going from completely idle to completely utilized.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 4 0 200560 91656 88596 176092 0 0 0 0 103 12 0 0 0 100
 0 0 200560 91660 88600 176092 0 0 0 0 104 12 0 0 0 100
 0 0 200560 91660 88600 176092 0 0 0 0 103 16 1 0 0 99
 0 0 200560 91660 88600 176092 0 0 0 0 103 12 0 0 0 100
 0 0 200560 91660 88604 176092 0 0 0 80 108 28 0 0 6 94
 0 0 200560 91660 88604 176092 0 0 0 0 103 12 0 0 0 100
 1 0 200560 91660 88604 176092 0 0 0 0 103 12 0 0 0 100
 1 0 200560 91652 88604 176092 0 0 0 0 113 27 14 3 0 83
 1 0 200560 84176 88604 176092 0 0 0 0 104 14 95 5 0 0
 2 0 200560 87216 88604 176092 0 0 0 324 137 96 86 9 1 4
 2 0 200560 78592 88604 176092 0 0 0 0 104 23 97 3 0 0
 2 0 200560 90940 88604 176092 0 0 0 0 149 63 92 8 0 0
 2 0 200560 83036 88604 176092 0 0 0 0 104 32 97 3 0 0
 2 0 200560 74916 88604 176092 0 0 0 0 103 22 93 7 0 0
 2 0 200560 80188 88608 176092 0 0 0 376 130 104 70 30 0 0
 3 0 200560 74028 88608 176092 0 0 0 0 103 69 70 30 0 0
 2 0 200560 81560 88608 176092 0 0 0 0 219 213 38 62 0 0
 1 0 200560 90200 88608 176100 0 0 8 0 153 118 56 31 0 13
 0 0 200560 88692 88612 179036 0 0 2940 0 249 249 44 4 24 28
 2 0 200560 88708 88612 179036 0 0 0 484 254 94 39 22 1 38
 0 0 200560 88708 88612 179036 0 0 0 0 121 22 0 0 0 100
 0 0 200560 88708 88612 179036 0 0 0 0 103 12 0 0 0 100

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 18 of 47

The following observations are made from the output:

• The run queue (r) during the spike goes as high as 3, almost
passing the threshold.

• The percentage of CPU time in the user space (us)goes to almost
90%, but then levels off.

• During this time, the amount of context switches (cs) does not
increase significantly, this could suggest that a single threaded
application used a large amount of processor for a short period of
time.

• It appears that the application batches all disk writes in one action.
For one second, the CPU experiences a disk usage spike (wa =
24%)

Case Study: Sustained CPU Utilization

In the next example, the system is completely utilized.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 3 0 206564 15092 80336 176080 0 0 0 0 718 26 81 19 0 0
 2 0 206564 14772 80336 176120 0 0 0 0 758 23 96 4 0 0
 1 0 206564 14208 80336 176136 0 0 0 0 820 20 96 4 0 0
 1 0 206956 13884 79180 175964 0 412 0 2680 1008 80 93 7 0 0
 2 0 207348 14448 78800 175576 0 412 0 412 763 70 84 16 0 0
 2 0 207348 15756 78800 175424 0 0 0 0 874 25 89 11 0 0
 1 0 207348 16368 78800 175596 0 0 0 0 940 24 86 14 0 0
 1 0 207348 16600 78800 175604 0 0 0 0 929 27 95 3 0 2
 3 0 207348 16976 78548 175876 0 0 0 2508 969 35 93 7 0 0
 4 0 207348 16216 78548 175704 0 0 0 0 874 36 93 6 0 1
 4 0 207348 16424 78548 175776 0 0 0 0 850 26 77 23 0 0
 2 0 207348 17496 78556 175840 0 0 0 0 736 23 83 17 0 0
 0 0 207348 17680 78556 175868 0 0 0 0 861 21 91 8 0 1

The following observations are made from the output:

• There are a high amount of interrupts (in) and a low amount of
context switches. It appears that a single process is making
requests to hardware devices.

• To further prove the presence of a single application, the user (us)
time is constantly at 85% and above. Along with the low amount of
context switches, the process comes on the processor and stays on
the processor.

• The run queue is just about at the limits of acceptable performance.
On a couple occasions, it goes beyond acceptable limits.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 19 of 47

Case Study: Overloaded Scheduler

In the following example, the kernel scheduler is saturated with context switches.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 2 1 207740 98476 81344 180972 0 0 2496 0 900 2883 4 12 57 27
 0 1 207740 96448 83304 180984 0 0 1968 328 810 2559 8 9 83 0
 0 1 207740 94404 85348 180984 0 0 2044 0 829 2879 9 6 78 7
 0 1 207740 92576 87176 180984 0 0 1828 0 689 2088 3 9 78 10
 2 0 207740 91300 88452 180984 0 0 1276 0 565 2182 7 6 83 4
 3 1 207740 90124 89628 180984 0 0 1176 0 551 2219 2 7 91 0
 4 2 207740 89240 90512 180984 0 0 880 520 443 907 22 10 67 0
 5 3 207740 88056 91680 180984 0 0 1168 0 628 1248 12 11 77 0
 4 2 207740 86852 92880 180984 0 0 1200 0 654 1505 6 7 87 0
 6 1 207740 85736 93996 180984 0 0 1116 0 526 1512 5 10 85 0
 0 1 207740 84844 94888 180984 0 0 892 0 438 1556 6 4 90 0

The following conclusions can be drawn from the output:

• The amount of context switches is higher than interrupts, suggesting
that the kernel has to spend a considerable amount of time context
switching threads.

• The high volume of context switches is causing an unhealthy
balance of CPU utilization. This is evident by the fact that the wait
on IO percentage is extremely high and the user percentage is
extremely low.

• Because the CPU is block waiting for I/O, the run queue starts to fill
and the amount of threads blocked waiting on I/O also fills.

Using the mpstat Utility

If your system has multiple processor cores, you can use the mpstat command
to monitor each individual core. The Linux kernel treats a dual core processor as
2 CPU’s. So, a dual processor system with dual cores will report 4 CPUs
available. The mpstat command provides the same CPU utilization statistics as
vmstat, but mpstat breaks the statistics out on a per processor basis.

mpstat –P ALL 1
Linux 2.4.21-20.ELsmp (localhost.localdomain) 05/23/2006

05:17:31 PM CPU %user %nice %system %idle intr/s
05:17:32 PM all 0.00 0.00 3.19 96.53 13.27
05:17:32 PM 0 0.00 0.00 0.00 100.00 0.00
05:17:32 PM 1 1.12 0.00 12.73 86.15 13.27
05:17:32 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:32 PM 3 0.00 0.00 0.00 100.00 0.00

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 20 of 47

Case Study: Underutilized Process Load

In the following case study, a 4 CPU cores are available. There are two CPU
intensive processes running that fully utilize 2 of the cores (CPU 0 and 1). The
third core is processing all kernel and other system functions (CPU 3). The fourth
core is sitting idle (CPU 2).

The top command shows that there are 3 processes consuming almost an entire
CPU core:

top -d 1
top - 23:08:53 up 8:34, 3 users, load average: 0.91, 0.37, 0.13
Tasks: 190 total, 4 running, 186 sleeping, 0 stopped, 0 zombie
Cpu(s): 75.2% us, 0.2% sy, 0.0% ni, 24.5% id, 0.0% wa, 0.0% hi, 0.0%
si
Mem: 2074736k total, 448684k used, 1626052k free, 73756k buffers
Swap: 4192956k total, 0k used, 4192956k free, 259044k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
15957 nobody 25 0 2776 280 224 R 100 20.5 0:25.48 php
15959 mysql 25 0 2256 280 224 R 100 38.2 0:17.78 mysqld
15960 apache 25 0 2416 280 224 R 100 15.7 0:11.20 httpd
15901 root 16 0 2780 1092 800 R 1 0.1 0:01.59 top
 1 root 16 0 1780 660 572 S 0 0.0 0:00.64 init

mpstat –P ALL 1
Linux 2.4.21-20.ELsmp (localhost.localdomain) 05/23/2006

05:17:31 PM CPU %user %nice %system %idle intr/s
05:17:32 PM all 81.52 0.00 18.48 21.17 130.58
05:17:32 PM 0 83.67 0.00 17.35 0.00 115.31
05:17:32 PM 1 80.61 0.00 19.39 0.00 13.27
05:17:32 PM 2 0.00 0.00 16.33 84.66 2.01
05:17:32 PM 3 79.59 0.00 21.43 0.00 0.00

05:17:32 PM CPU %user %nice %system %idle intr/s
05:17:33 PM all 85.86 0.00 14.14 25.00 116.49
05:17:33 PM 0 88.66 0.00 12.37 0.00 116.49
05:17:33 PM 1 80.41 0.00 19.59 0.00 0.00
05:17:33 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:33 PM 3 83.51 0.00 16.49 0.00 0.00

05:17:33 PM CPU %user %nice %system %idle intr/s
05:17:34 PM all 82.74 0.00 17.26 25.00 115.31
05:17:34 PM 0 85.71 0.00 13.27 0.00 115.31
05:17:34 PM 1 78.57 0.00 21.43 0.00 0.00
05:17:34 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:34 PM 3 92.86 0.00 9.18 0.00 0.00

05:17:34 PM CPU %user %nice %system %idle intr/s
05:17:35 PM all 87.50 0.00 12.50 25.00 115.31
05:17:35 PM 0 91.84 0.00 8.16 0.00 114.29
05:17:35 PM 1 90.82 0.00 10.20 0.00 1.02
05:17:35 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:35 PM 3 81.63 0.00 15.31 0.00 0.00

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 21 of 47

You can determine which process is taking up which CPU by running the ps
command again and monitoring the PSR column.

while :; do ps -eo pid,ni,pri,pcpu,psr,comm | grep 'mysqld'; sleep 1;
done
 PID NI PRI %CPU PSR COMMAND
15775 0 15 86.0 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 94.0 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 96.6 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 98.0 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 98.8 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 99.3 3 mysqld

Conclusion
Monitoring CPU performance consists of the following actions:

• Check the system run queue and make sure there are no more than
3 runnable threads per processor

• Make sure the CPU utilization is split between 70/30 between user
and system

• When the CPU spends more time in system mode, it is more than
likely overloaded and trying to reschedule priorities

• Running CPU bound process always get penalized while I/O
process are rewarded

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 22 of 47

Introducing Virtual Memory
Virtual memory uses a disk as an extension of RAM so that the effective size of usable
memory grows correspondingly. The kernel will write the contents of a currently unused
block of memory to the hard disk so that the memory can be used for another purpose.
When the original contents are needed again, they are read back into memory. This is all
made completely transparent to the user; programs running under Linux only see the
larger amount of memory available and don't notice that parts of them reside on the disk
from time to time. Of course, reading and writing the hard disk is slower (on the order of a
thousand times slower) than using real memory, so the programs don't run as fast. The
part of the hard disk that is used as virtual memory is called the swap space.

Virtual Memory Pages
Virtual memory is divided into pages. Each virtual memory page on the X86
architecture is 4KB. When the kernel writes memory to and from disk, it writes
memory in pages. The kernel writes memory pages to both the swap device and
the file system.

Virtual Size (VSZ) and Resident Set Size (RSS)
When an application starts, it requests virtual memory (VSZ). The kernel either
grants or denies the virtual memory request. As the application uses the
requested memory, that memory is mapped into physical memory. The RSS is
the amount of virtual memory that is physically mapped into memory. In most
cases, an application uses less resident memory (RSS) than it requested (VSZ).

The following output from the ps command displays the VSZ and RSS values. In
all cases, VSZ is greater than RSS. This means that although an application
requested virtual memory, not all of it is allocated in RAM (RSS).

ps –aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

<snip>

daemon 2177 0.0 0.2 3352 648 ? Ss 23:03 0:00 /usr/sbin/atd
dbus 2196 0.0 0.5 13180 1320 ? Ssl 23:03 0:00 dbus-daemon-1 --sys
root 2210 0.0 0.4 2740 1044 ? Ss 23:03 0:00 cups-config-daemon
root 2221 0.3 1.5 6108 4036 ? Ss 23:03 0:02 hald
root 2231 0.0 0.1 2464 408 tty1 Ss+ 23:03 0:00 /sbin/mingetty tty1
root 2280 0.0 0.1 3232 404 tty2 Ss+ 23:03 0:00 /sbin/mingetty tty2
root 2343 0.0 0.1 1692 408 tty3 Ss+ 23:03 0:00 /sbin/mingetty tty3
root 2344 0.0 0.1 2116 404 tty4 Ss+ 23:03 0:00 /sbin/mingetty tty4
root 2416 0.0 0.1 1476 408 tty5 Ss+ 23:03 0:00 /sbin/mingetty tty5
root 2485 0.0 0.1 1976 408 tty6 Ss+ 23:03 0:00 /sbin/mingetty tty6
root 2545 0.0 0.9 10920 2336 ? Ss 23:03 0:00 /usr/bin/gdm-binary

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 23 of 47

Kernel Memory Paging
Memory paging is a normal activity not to be confused with memory swapping. Memory
paging is the process of synching memory back to disk at normal intervals. Over time,
applications will grow to consume all of memory. At some point, the kernel must scan
memory and reclaim unused pages to be allocated to other applications.

The Page Frame Reclaim Algorithm (PFRA)
The PFRA is responsible for freeing memory. The PFRA selects which memory
pages to free by page type. Page types are listed below:

• Unreclaimable – locked, kernel, reserved pages

• Swappable – anonymous memory pages

• Syncable – pages backed by a disk file

• Discardable – static pages, discarded pages
All but the “unreclaimable” pages may be reclaimed by the PFRA.

There are two main functions in the PFRA. These include the kswapd kernel
thread and the “Low On Memory Reclaiming” function.

kswapd

The kswapd daemon is responsible for ensuring that memory stays free. It
monitors the pages_high and pages_low watermarks in the kernel. If the
amount of free memory is below pages_low, the kswapd process starts a scan
to attempt to free 32 pages at a time. It repeats this process until the amount of
free memory is above the pages_high watermark.

The kswapd thread performs the following actions:

• If the page is unmodified, it places the page on the free list.

• If the page is modified and backed by a filesystem, it writes the
contents of the page to disk.

• If the page is modified and not backed up by any filesystem
(anonymous), it writes the contents of the page to the swap device.

ps -ef | grep kswapd
root 30 1 0 23:01 ? 00:00:00 [kswapd0]

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 24 of 47

Low on Memory Reclaiming (LMR)

The LMR attempts to reclaim pages when a page allocation fails. Page
allocations fail when kswapd can’t maintain the enough free memory. It attempts
to free 1024 dirty pages per iteration until memory allocation is successful.

Out of Memory Killer (OMK)

The kernel implements OMK when the LMR can’t reclaim pages fast enough.
The OMK uses a selective algorithm (select_bad_process()) to determine
which processes to kill. Once OMK has selected a process, it will send it a
SIGKILL. This will immediately free pages. The OMK selects a process to kill
based on the following criteria:

• The process owns a large number of page frames.

• The process should only lose a small amount of work.

• The process should have a low static priority process.

• The process should not be owned by root.

Kernel Paging with pdflush
The pdflush daemon is responsible for synchronizing any pages associated
with a file on a filesystem back to disk. In other words, when a file is modified in
memory, the pdflush daemon writes it back to disk.

ps -ef | grep pdflush
root 28 3 0 23:01 ? 00:00:00 [pdflush]
root 29 3 0 23:01 ? 00:00:00 [pdflush]

The pdflush daemon starts synchronizing dirty pages back to the filesystem
when 10% of the pages in memory are dirty. This is due to a kernel tuning
parameter called vm.dirty_background_ratio.

sysctl -n vm.dirty_background_ratio
10

The pdflush daemon works independently of the PFRA under most
circumstances. When the kernel invokes the LMR algorithm, the LMR specifically
forces pdflush to flush dirty pages in addition to other page freeing routines.

Under intense memory pressure in the 2.4 kernel, the system would experience
swap thrashing. This would occur when the PFRA would steal a page that an active
process was trying to use. As a result, the process would have to reclaim that page
only for it to be stolen again, creating a thrashing condition. This was fixed in
kernel 2.6 with the “Swap Token”, which prevents the PFRA from constantly
stealing the same page from a process.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 25 of 47

Case Study: Large Inbound I/O
The vmstat utility reports on virtual memory usage in addition to CPU usage.
The following fields in the vmstat output are relevant to virtual memory:

Table 2: The vmstat Memory Statistics

Field Description

Swapd
The amount of virtual memory in KB currently in use. As free memory reaches low
thresholds, more data is paged to the swap device.

Free
The amount of physical RAM in kilobytes currently available to running
applications.

Buff
The amount of physical memory in kilobytes in the buffer cache as a result of
read() and write() operations.

Cache The amount of physical memory in kilobytes mapped into process address space.
So The amount of data in kilobytes written to the swap disk.
Si The amount of data in kilobytes written from the swap disk back into RAM.

Bo
The amount of disk blocks paged out from the RAM to the filesystem or swap
device.

Bi The amount of disk blocks paged into RAM from the filesystem or swap device.

The following vmstat output demonstrates heavy utilization of virtual memory
during an I/O application spike.

vmstat 3
 procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy id wa
 3 2 809192 261556 79760 886880 416 0 8244 751 426 863 17 3 6 75
 0 3 809188 194916 79820 952900 307 0 21745 1005 1189 2590 34 6 12 48
 0 3 809188 162212 79840 988920 95 0 12107 0 1801 2633 2 2 3 94
 1 3 809268 88756 79924 1061424 260 28 18377 113 1142 1694 3 5 3 88
 1 2 826284 17608 71240 1144180 100 6140 25839 16380 1528 1179 19 9 12 61
 2 1 854780 17688 34140 1208980 1 9535 25557 30967 1764 2238 43 13 16 28
 0 8 867528 17588 32332 1226392 31 4384 16524 27808 1490 1634 41 10 7 43
 4 2 877372 17596 32372 1227532 213 3281 10912 3337 678 932 33 7 3 57
 1 2 885980 17800 32408 1239160 204 2892 12347 12681 1033 982 40 12 2 46
 5 2 900472 17980 32440 1253884 24 4851 17521 4856 934 1730 48 12 13 26
 1 1 904404 17620 32492 1258928 15 1316 7647 15804 919 978 49 9 17 25
 4 1 911192 17944 32540 1266724 37 2263 12907 3547 834 1421 47 14 20 20
 1 1 919292 17876 31824 1275832 1 2745 16327 2747 617 1421 52 11 23 14
 5 0 925216 17812 25008 1289320 12 1975 12760 3181 772 1254 50 10 21 19
 0 5 932860 17736 21760 1300280 8 2556 15469 3873 825 1258 49 13 24 15

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 26 of 47

The following observations are made from this output:

• A large amount of disk blocks are paged in (bi) from the filesystem.
This is evident in the fact that the cache of data in process address
spaces (cache) grows.

• During this period, the amount of free memory (free) remains
steady at 17MB even though data is paging in from the disk to
consume free RAM.

• To maintain the free list, kswapd steals memory from the read/write
buffers (buff) and assigns it to the free list. This is evident in the
gradual decrease of the buffer cache (buff).

• The kswapd process then writes dirty pages to the swap device
(so). This is evident in the fact that the amount of virtual memory
utilized gradually increases (swpd).

Conclusion
Virtual memory performance monitoring consists of the following actions:

• The less major page faults on a system, the better response times
achieved as the system is leveraging memory caches over disk
caches.

• Low amounts of free memory are a good sign that caches are
effectively used unless there are sustained writes to the swap
device and disk.

• If a system reports any sustained activity on the swap device, it
means there is a memory shortage on the system.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 27 of 47

Introducing I/O Monitoring
Disk I/O subsystems are the slowest part of any Linux system. This is due mainly to their
distance from the CPU and the fact that disks require the physics to work (rotation and
seek). If the time taken to access disk as opposed to memory was converted into minutes
and seconds, it is the difference between 7 days and 7 minutes. As a result, it is essential
that the Linux kernel minimizes the amount of I/O it generates on a disk. The following
subsections describe the different ways the kernel processes data I/O from disk to
memory and back.

Reading and Writing Data - Memory Pages
The Linux kernel breaks disk I/O into pages. The default page size on most Linux
systems is 4K. It reads and w rites disk blocks in and out of memory in 4K page
sizes. You can check the page size of your system by using the time command
in verbose mode and searching for the page size:

/usr/bin/time -v date

<snip>

Page size (bytes): 4096

<snip>

Major and Minor Page Faults
Linux, like most UNIX systems, uses a virtual memory layer that maps into
physical address space. This mapping is "on demand" in the sense that when a
process starts, the kernel only maps that which is required. When an application
starts, the kernel searches the CPU caches and then physical memory. If the
data does not exist in either, the kernel issues a major page fault (MPF). A MPF
is a request to the disk subsystem to retrieve pages off disk and buffer them in
RAM.

Once memory pages are mapped into the buffer cache, the kernel will attempt to
use these pages resulting in a minor page fault (MnPF). A MnPF saves the
kernel time by reusing a page in memory as opposed to placing it back on the
disk.

In the following example, the time command is used to demonstrate how many
MPF and MnPF occurred when an application started. The first time the
application starts, there are many MPFs:

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 28 of 47

/usr/bin/time -v evolution

<snip>

Major (requiring I/O) page faults: 163
Minor (reclaiming a frame) page faults: 5918

<snip>

The second time evolution starts, the kernel does not issue any MPFs because the
application is in memory already:

/usr/bin/time -v evolution

<snip>

Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 5581

<snip>

The File Buffer Cache
The file buffer cache is used by the kernel to minimize MPFs and maximize
MnPFs. As a system generates I/O over time, this buffer cache will continue to
grow as the system will leave these pages in memory until memory gets low and
the kernel needs to "free" some of these pages for other uses. The end result is
that many system administrators see low amounts of free memory and become
concerned when in reality, the system is just making good use of its caches.

The following output is taken from the /proc/meminfo file:

cat /proc/meminfo
MemTotal: 2075672 kB
MemFree: 52528 kB
Buffers: 24596 kB
Cached: 1766844 kB

<snip>

The system has a total of 2 GB (MemTotal) of RAM available on it. There is
currently 52 MB of RAM "free" (MemFree), 24 MB RAM that is allocated to disk
write operations (Buffers), and 1.7 GB of pages read from disk in RAM
(Cached).

The kernel is using these via the MnPF mechanism as opposed to pulling all of
these pages in from disk. It is impossible to tell from these statistics whether or
not the system is under distress as we only have part of the picture.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 29 of 47

Types of Memory Pages
There are 3 types of memory pages in the Linux kernel. These pages are
described below:

• Read Pages – These are pages of data read in via disk (MPF) that
are read only and backed on disk. These pages exist in the Buffer
Cache and include static files, binaries, and libraries that do not
change. The Kernel will continue to page these into memory as it
needs them. If memory becomes short, the kernel will "steal" these
pages and put them back on the free list causing an application to
have to MPF to bring them back in.

• Dirty Pages – These are pages of data that have been modified by
the kernel while in memory. These pages need to be synced back to
disk at some point using the pdflush daemon. In the event of a
memory shortage, kswapd (along with pdflush) will write these
pages to disk in order to make more room in memory.

• Anonymous Pages – These are pages of data that do belong to a
process, but do not have any file or backing store associated with
them. They can't be synchronized back to disk. In the event of a
memory shortage, kswapd writes these to the swap device as
temporary storage until more RAM is free ("swapping" pages).

Writing Data Pages Back to Disk
Applications themselves may choose to write dirty pages back to disk
immediately using the fsync() or sync() system calls. These system calls
issue a direct request to the I/O scheduler. If an application does not invoke
these system calls, the pdflush kernel daemon runs at periodic intervals and
writes pages back to disk.

ps -ef | grep pdflush
root 186 6 0 18:04 ? 00:00:00 [pdflush]

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 30 of 47

Monitoring I/O
Certain conditions occur on a system that may create I/O bottlenecks. These conditions
may be identified by using a standard set of system monitoring tools. These tools include
top, vmstat, iostat, and sar. There are some similarities between the output of
these commands, but for the most part, each offers a unique set of output that provides a
different aspect on performance. The following subsections describe conditions that
cause I/O bottlenecks.

Condition 1: Too Much I/O at Once
In an ideal environment, a CPU splits a percentage of its time between user (65%),
kernel (30%) and idle (5%). If I/O starts to cause a bottleneck on the system, a new
condition called "Wait on I/O" (WIO) appears in CPU performance statistics. A WIO
condition occurs when a CPU is completely idle because all runnable processes are
waiting on I/O. This means that all applications are in a sleep state because they are
waiting for requests to complete in the I/O subsystem.

The vmstat command provides WIO statistics in the last 4 fields of output under the
"cpu" header.

vmstat 1
procs -----memory----- ---swap---io---- --system--cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
3 2 0 55452 9236 1739020 0 0 9352 0 2580 8771 20 24 0 57
2 3 0 53888 9232 1740836 0 0 14860 0 2642 8954 23 25 0 52
2 2 0 51856 9212 1742928 0 0 12688 0 2636 8487 23 25 0 52

These last 4 columns provide percentages of CPU utilization for user (us), kernel (sys),
idle (id), and WIO (wa). In the previous output, the CPU averages 50% idle waiting on
I/O requests to complete. This means that there is 50% of the processor that is usable for
executing applications, but no applications can execute because the kernel is waiting on
I/O requests to complete. You can observe this in the blocked threads column (b).

It is also worth noting that the major cause of the I/O bottleneck is disk reads due to the
large amount of disk blocks read into memory (bi). There is no data being written out to
disk as the blocks out (bo) column has a zero value. From this output alone, it appears
that the system is processing a large I/O request.

The sar command without any options also provides CPU percentages that include
WIO (%iowait) percentages:

sar 1 100
07:25:55 PM CPU %user %nice %system %iowait %idle
07:25:56 PM all 74.26 0.00 25.74 0.00 0.00
07:25:57 PM all 52.00 0.00 31.00 16.00 1.00
07:25:58 PM all 12.87 0.00 13.86 73.27 0.00

The sar command with the -B option provides statistics on kilobytes read (pgpgin/s)
and written out (pgpgout/s) of memory that may be correlated with the bi and bo

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 31 of 47

columns of vmstat. The sar -B command also shows MnPF (fault/s) and MPF
statistics (majflt/s).

sar -B 1 100
07:28:23 PM pgpgin/s pgpgout/s fault/s majflt/s
07:28:24 PM 6653.47 463.37 1604.95 74.26
07:28:25 PM 7448.00 96.00 2061.00 79.00
07:28:26 PM 4190.10 118.81 723.76 30.69
07:28:27 PM 2966.34 146.53 525.74 9.90
07:28:28 PM 3728.00 0.00 146.00 6.00
07:28:29 PM 5244.00 580.00 927.00 39.00

There is no exact tool that can identify which application is causing the I/O read requests.
The top tool can provide enough insight to make an educated guess. Start the top
command with a delay of 1 second:

top -d 1

Once top is running, sort the output by faults (MPF and MnPF) by typing "F" to bring up
the sort menu and "u" to sort by faults.

top -d 1
top - 19:45:07 up 1:40, 3 users, load average: 6.36, 5.87, 4.40
Tasks: 119 total, 3 running, 116 sleeping, 0 stopped, 0 zombie
Cpu(s): 5.9% us, 87.1% sy, 0.0% ni, 0.0% id, 5.9% wa, 1.0% hi, 0.0% si
Mem: 2075672k total, 2022668k used, 53004k free, 7156k buffers
Swap: 2031608k total, 132k used, 2031476k free, 1709372k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ nFLT COMMAND
3069 root 5 -10 450m 303m 280m S 61.5 15.0 10:56.68 4562 vmware-vmx
3016 root 5 -10 447m 300m 280m S 21.8 14.8 12:22.83 3978 vmware-vmx
3494 root 5 -10 402m 255m 251m S 3.0 12.6 1:08.65 3829 vmware-vmx
3624 root 5 -10 401m 256m 251m S 1.0 12.6 0:29.92 3747 vmware-vmx
<snip>

The previous output demonstrates that a series of VMWare process are causing the
majority of page faults (nFLT) which would contribute to the surge of read requests seen
in the previous commands. This surge has caused the WIO condition on the system,
rendering the CPU idle and causing the system to appear much slower.

Condition 2: Pipes Too Small
Every I/O request to a disk takes a certain amount of time. This is due primarily to the fact
that a disk must spin and a head must seek. The spinning of a disk is often referred to as
"rotational delay" (RD) and the moving of the head as a "disk seek" (DS). The time it
takes for each I/O request is calculated by adding DS and RD. A disk's RD is fixed based
on the RPM of the drive. An RD is considered half a revolution around a disk. To
calculate RD for a 10K RPM drive, perform the following:

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 32 of 47

1. Divide 10000 RPM by 60 seconds (10000/60 = 166 RPS)

2. Convert 1 of 166 to decimal (1/166 = 0.0006 seconds per Rotation)

3. Multiply the seconds per rotation by 1000 milliseconds (6 MS per rotation)

4. Divide the total in half (6/2 = 3 MS) or RD

5. Add an average of 3 MS for seek time (3 MS + 3 MS = 6 MS)

6. Add 2 MS for latency (internal transfer) (6 MS + 2 MS = 8MS)

7. Divide 1000 MS by 8MS per I/O (1000/8 = 125 IOPS)

Each time an application issues an I/O, it takes an average of 8MS to service that I/O on
a 10K RPM disk. Since this is a fixed time, it is imperative that the disk be as efficient as
possible with the time it will spend reading and writing to the disk. The amount of I/O
requests are often measured in I/Os Per Second (IOPS). The 10K RPM disk has the
ability to push 120 to 150 (burst) IOPS. To measure the effectiveness of IOPS, divide the
amount of IOPS by the amount of data read or written for each I/O.

Random vs Sequential I/O
The relevance of KB per I/O depends on the workload of the system. There are
two different types of workload categories on a system. They are sequential and
random.

Sequential I/O

The iostat command provides information about IOPS and the amount of data
processed during each I/O. Use the –x switch with iostat. Sequential
workloads require large amounts of data to be read sequentially and at once.
These include applications like enterprise databases executing large queries and
streaming media services capturing data. With sequential workloads, the KB per
I/O ratio should be high. Sequential workload performance relies on the ability to
move large amounts of data as fast as possible. If each I/O costs time, it is
imperative to get as much data out of that I/O as possible.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 33 of 47

iostat -x 1

avg-cpu: %user %nice %sys %idle
 0.00 0.00 57.1 4 42.86

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 12891.43 0.00 105.71 0.00 106080.00 0.00 53040.00 1003.46 1099.43 3442.43 26.49 280.00
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 12857.14 0.00 5.71 0.00 105782.86 0.00 52891.43 18512.00 559.14 780.00 490.00 280.00
/dev/sda3 0.00 34.29 0.00 100.00 0.00 297.14 0.00 148.57 2.97 540.29 3594.57 24.00 240.00

avg-cpu: %user %nice %sys %idle
0.00 0.00 23.53 76.47

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 17320.59 0.00 102.94 0.00 142305.88 0.00 71152.94 1382.40 6975.29 952.29 28.57 294.12
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 16844.12 0.00 102.94 0.00 138352.94 0.00 69176.47 1344.00 6809.71 952.29 28.57 294.12
/dev/sda3 0.00 476.47 0.00 0.00 0.00 952.94 0.00 1976.47 0.00 165.59 0.00 0.00 276.47

The way to calculate the efficiency of IOPS is to divide the reads per second
(r/s) and writes per second (w/s) by the kilobytes read (rkB/s) and written
(wkB/s) per second. In the above output, the amount of data written per I/O for
/dev/sda increases during each iteration:

53040/105 = 505KB per I/O

71152/102 = 697KB per I/O

Random I/O

Random access workloads do not depend as much on size of data. They depend
primarily on the amount of IOPS a disk can push. Web and mail servers are
examples of random access workloads. The I/O requests are rather small.
Random access workload relies on how many requests can be processed at
once. Therefore, the amount of IOPS the disk can push becomes crucial.

iostat -x 1

avg-cpu: %user %nice %sys %idle
 2.04 0.00 97.96 0.00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 633.67 3.06 102.31 24.49 5281.63 12.24 2640.82 288.89 73.67 113.89 27.22 50.00
/dev/sda1 0.00 5.10 0.00 2.04 0.00 57.14 0.00 28.57 28.00 1.12 55.00 55.00 11.22
/dev/sda2 0.00 628.57 3.06 100.27 24.49 5224.49 12.24 2612.24 321.50 72.55 121.25 30.63 50.00
/dev/sda3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

avg-cpu: %user %nice %sys %idle
 2.15 0.00 97.85 0.00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 41.94 6.45 130.98 51.61 352.69 25.81 3176.34 19.79 2.90 286.32 7.37 15.05
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 41.94 4.30 130.98 34.41 352.69 17.20 3176.34 21.18 2.90 320.00 8.24 15.05
/dev/sda3 0.00 0.00 2.15 0.00 17.20 0.00 8.60 0.00 8.00 0.00 0.00 0.00 0.00

The previous output shows that the amount of IOPS for writes stays almost the
same as the sequential output. The difference is the actual write size per I/O:

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 34 of 47

2640/102 = 23KB per I/O

3176/130 = 24KB per I/O

Condition 3: Slow Disks
Many disk configurations may not be a physical disk on the system. Some may be part of
a volume group, NAS, shared drive, or SAN. It is possible to measure the latency
between the request time and the actual service time of a device.

Many disk configurations may not be a physical disk on the system. Some may be part of
a volume group, NAS, shared drive, or SAN. It is possible to measure the latency
between the request time and the actual service time of a device.

The following output was taken from a system with Linux volume groups under extreme
sequential I/O write access.

iostat -x 1

<snip>

avg-cpu: %user %nice %sys %iowait %idle
 0.50 0.00 30.94 8.19 60.37

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
hda 0.00 2610.03 0.00 6.02 0.00 20984.62 0.00 10492.31 3485.78 8.59 315.28 56.50 34.01
hdb 0.00 2610.03 0.00 6.02 0.00 20984.62 0.00 10492.31 3485.78 8.40 284.56 56.44 33.98
md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
md1 0.00 0.00 0.00 2622.74 0.00 20981.94 0.00 10490.97 8.00 0.00 0.00 0.00 0.00

avg-cpu: %user %nice %sys %iowait %idle
 0.83 0.00 59.27 4.01 35.89

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
hda 0.00 13595.64 0.00 10.07 0.00 109197.32 0.00 54598.66 10846.93 95.15 1872.43 100.07
100.74
hdb 0.00 13595.64 0.00 10.40 0.00 109197.32 0.00 54598.66 10497.03 94.64 1854.52 96.84
100.74
md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
md1 0.00 0.00 0.00 13649.66 0.00 109197.32 0.00 54598.66 8.00 0.00 0.00 0.00 0.00

avg-cpu: %user %nice %sys %iowait %idle
 0.34 0.00 20.94 62.31 16.42

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
hda 0.00 3420.07 0.00 11.37 0.00 27478.26 0.00 13739.13 2416.47 158.53 2997.18 88.24 100.33
hdb 0.00 3420.07 0.00 11.37 0.00 27478.26 0.00 13739.13 2416.47 157.97 2964.79 88.24 100.33
md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
md1 0.00 0.00 0.00 3434.78 0.00 27478.26 0.00 13739.13 8.00 0.00 0.00 0.00 0.00

The previous iostat output monitors a RAID 1 device (/dev/md1). Notice the
difference between the service time (svctm) and the average wait time (await). Both of
these values are in milliseconds. The actual time it takes to service the request is minimal
compared to the time the system spends waiting for the response.

Since a mirror has to sync to another disk, the amount of I/O doubles. Notice in the
following output that the disks were completely idle waiting on I/O. Even though requests
were still being made (w/s), there was no disk activity and a large discrepancy between
the service time and average wait time. Also notice that the disks were 100% utilized

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 35 of 47

even though nothing was writing. This is indicative of a complete stall waiting for the
volume group software to catch up.

avg-cpu: %user %nice %sys %iowait %idle
 0.00 0.00 1.00 52.68 46.32

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
hda 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00 0.00 145.44 5848.03 90.94 100.03
hdb 0.00 0.00 0.00 10.67 0.00 0.00 0.00 0.00 0.00 144.89 5872.97 93.78 100.03
md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
md1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

avg-cpu: %user %nice %sys %iowait %idle
 0.17 0.00 0.84 49.00 50.00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
hda 0.00 0.00 0.00 10.96 0.00 0.00 0.00 0.00 0.00 111.83 8053.45 90.94 99.70
hdb 0.00 0.00 0.00 10.96 0.00 0.00 0.00 0.00 0.00 111.28 8003.18 90.94 99.70
md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
md1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This behavior can also be observed using the sar -b command. This command shows
I/O statistics per device node number. To locate the node numbers of your devices, use
an ls command with a -lL switch.

ls -lL /dev/md1
brw-rw---- 1 root disk 9, 1 Dec 30 08:13 /dev/md1
ls -lL /dev/hda
brw-rw---- 1 root disk 3, 0 Dec 30 08:13 /dev/hda
ls -lL /dev/hdb
brw-rw---- 1 root disk 3, 64 Dec 30 08:13 /dev/hdb

The mirror device has a major number of 9 and a minor number of 1 or 91. The other two
disks are 3, 0 and 3, 64. Looking at the sar output, it appears that the RAID device issues
a large amount of I/O writes to the underlying drives. The drives end up timing out trying
to process the requests.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 36 of 47

sar -b 3

<snip>

04:28:14 PM dev3-0 11.11 0.00 106650.51
04:28:14 PM dev3-64 10.10 0.00 106634.34
04:28:14 PM dev9-0 0.00 0.00 0.00
04:28:14 PM dev9-1 13326.26 0.00 106610.10

<snip>

04:28:15 PM dev3-0 9.90 0.00 0.00
04:28:15 PM dev3-64 10.89 0.00 0.00
04:28:15 PM dev9-0 0.00 0.00 0.00
04:28:15 PM dev9-1 0.00 0.00 0.00

<snip>

Condition 4: When Virtual Memory Kills I/O
If the system does not have enough RAM to accommodate all requests, it must start to
use the SWAP device. Just like file system I/O, writes to the SWAP device are just as
costly. If the system is extremely deprived of RAM, it is possible that it will create a
paging storm to the SWAP disk. If the SWAP device is on the same file system as the
data trying to be accessed, the system will enter into contention for the I/O paths. This
will cause a complete performance breakdown on the system. If pages can't be read or
written to disk, they will stay in RAM longer. If they stay in RAM longer, the kernel will
need to free the RAM. The problem is that the I/O channels are so clogged that nothing
can be done. This inevitably can lead to a kernel panic and crash of the system.

The following vmstat output demonstrates a system under memory distress. It is writing
data out to the swap device:

 procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
17 0 1250 3248 45820 1488472 30 132 992 0 2437 7657 23 50 0 23
11 0 1376 3256 45820 1488888 57 245 416 0 2391 7173 10 90 0 0
12 0 1582 1688 45828 1490228 63 131 1348 76 2432 7315 10 90 0 10
12 2 3981 1848 45468 1489824 185 56 2300 68 2478 9149 15 12 0 73
14 2 10385 2400 44484 1489732 0 87 1112 20 2515 11620 0 12 0 88
14 2 12671 2280 43644 1488816 76 51 1812 204 2546 11407 20 45 0 35

The previous output demonstrates a large amount of read requests into memory (bi).
The requests are so many that the system is short on memory (free). This is causing
the system to send blocks to the swap device (so) and the size of swap keeps growing
(swpd). Also notice a large percentage of WIO time (wa). This indicates that the CPU is
starting to slow because of I/O requests.

To see the effect the swapping to disk is having on the system, check the swap partition
on the drive using iostat.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 37 of 47

iostat -x 1

avg-cpu: %user %nice %sys %idle
 0.00 0.00 100.00 0.00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 1766.67 4866.67 1700.00 38933.33 31200.00 19466.67 15600.00 10.68 6526.67 100.56 5.08
3333.33
/dev/sda1 0.00 933.33 0.00 0.00 0.00 7733.33 0.00 3866.67 0.00 20.00 2145.07 7.37 200.00
/dev/sda2 0.00 0.00 4833.33 0.00 38666.67 533.33 19333.33 266.67 8.11 373.33 8.07 6.90 87.00
/dev/sda3 0.00 833.33 33.33 1700.00 266.67 22933.33 133.33 11466.67 13.38 6133.33 358.46 11.35
1966.67

In the previous example, both the swap device (/dev/sda1) and the file system device
(/dev/sda3) are contending for I/O. Both have high amounts of write requests per
second (w/s) and high wait time (await) to low service time ratios (svctm). This
indicates that there is contention between the two partitions, causing both to under
perform.

Conclusion
I/O performance monitoring consists of the following actions:

• Any time the CPU is waiting on I/O, the disks are overloaded.

• Calculate the amount of IOPS your disks can sustain.

• Determine whether your applications require random or sequential
disk access.

• Monitor slow disks by comparing wait times and service times.

• Monitor the swap and file system partitions to make sure that virtual
memory is not contending for filesystem I/O.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 38 of 47

Introducing Network Monitoring
Out of all the subsyetms to monitor, networking is the hardest to monitor. This is due
primarily to the fact that the network is abstract. There are many factors that are beyond
a system’s control when it comes to monitoring and performance. These factors include
latency, collisions, congestion and packet corruption to name a few.

This section focuses on how to check the performance of Ethernet, IP and TCP.

Ethernet Configuration Settings
Unless explicitly changed, all Ethernet networks are auto negotiated for speed.
The benefit of this is largely historical when there were multiple devices on a
network that could be different speeds and duplexes.

Most enterprise Ethernet networks run at either 100 or 1000BaseTX. Use
ethtool to ensure that a specific system is synced at this speed.

In the following example, a system with a 100BaseTX card is running auto
negotiated in 10BaseT.

ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 10Mb/s
 Duplex: Half
 Port: MII
 PHYAD: 32
 Transceiver: internal
 Auto-negotiation: on
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 Link detected: yes

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 39 of 47

The following example demonstrates how to force this card into 100BaseTX:

ethtool -s eth0 speed 100 duplex full autoneg off
ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: No
 Speed: 100Mb/s
 Duplex: Full
 Port: MII
 PHYAD: 32
 Transceiver: internal
 Auto-negotiation: off
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 Link detected: yes

Just because an interface is now synchronized does not mean it is still having
bandwidth problems. The iptraf utility (http://iptraf.seul.org) provides
a dashboard of throughput per Ethernet interface.

iptraf –d eth0

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 40 of 47

Figure 1: Monitoring for Network Throughput

Monitoring for Error Conditions
The most common kind of error condition checked is for is packet collisions. Most
enterprise networks are in a switched environment, practically eliminating
collisions. However, with the increased usage of networked based services, there
are other conditions that may arise. These conditions include dropped frames,
backlogged buffers, and overutilized NIC cards.

Under extreme network loads, the sar command provides a report on all
possible error types on a network.

sar -n FULL 5 100
Linux 2.6.9-55.ELsmp (sapulpa) 06/23/2007

11:44:32 AM IFACE rxpck/s txpck/s rxbyt/s txbyt/s rxcmp/s txcmp/s rxmcst/s
11:44:37 AM lo 6.00 6.00 424.40 424.40 0.00 0.00 0.00
11:44:37 AM eth0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:44:37 AM sit0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11:44:32 AM IFACE rxerr/s txerr/s coll/s rxdrop/s txdrop/s txcarr/s rxfram/s rxfifo/s txfifo/s
11:44:37 AM lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:44:37 AM eth0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11:44:37 AM sit0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11:44:32 AM totsck tcpsck udpsck rawsck ip-frag
11:44:37 AM 297 79 8 0 0

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 41 of 47

Table 3: Types of Network Errors

Field Description
rxerr/s rate of receive errors
tcerr/s rate of transmit errors
coll/s rate of collisions
rxdrop/s received frames dropped due to kernel buffer shortage

txdrop/s
trasnmitted frames dropped due to kernel buffer
shortage

txcarr/s carrier errors
rxfram/s frame alignement errors
rxfifo/s receiving FIFO errors
tcfifo/s trasmitted FIFO errors

Monitoring Traffic Types
Certain systems are designed to serve different traffic. For instance, a web
server serves traffic over port 80 and a mail server over port 25. The iptraf tool
determines displays the highest volume of traffic per TCP port.

Figure 2: Monitoring TCP Traffic per Port

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 42 of 47

Conclusion
To monitor network performance, perform the following actions:

• Check to make sure all Ethernet interfaces are running at proper
rates.

• Check total throughput per network interface and be sure it is inline
with network speeds.

• Monitor network traffic types to ensure that the appropriate traffic
has precedence on the system.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 43 of 47

Performance Monitoring Step by Step – Case Study
In the following scenario, an end user calls support and complains that the reporting
module of a web user interface is taking 20 minutes to generate a report when it should
take 15 seconds.

System Configuration

• RedHat Enterprise Linux 3 update 7

• Dell 1850 Dual Core Xenon Processors, 2 GB RAM, 75GB 15K
Drives

• Custom LAMP software stack

Performance Analysis Procedure
1. Start with the output of vmstat for a dashboard of system performance.

vmstat 1 10
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy id wa
 1 0 249844 19144 18532 1221212 0 0 7 3 22 17 25 8 17 18
 0 1 249844 17828 18528 1222696 0 0 40448 8 1384 1138 13 7 65 14
 0 1 249844 18004 18528 1222756 0 0 13568 4 623 534 3 4 56 37
 2 0 249844 17840 18528 1223200 0 0 35200 0 1285 1017 17 7 56 20
 1 0 249844 22488 18528 1218608 0 0 38656 0 1294 1034 17 7 58 18
 0 1 249844 21228 18544 1219908 0 0 13696 484 609 559 5 3 54 38
 0 1 249844 17752 18544 1223376 0 0 36224 4 1469 1035 10 6 67 17
 1 1 249844 17856 18544 1208520 0 0 28724 0 950 941 33 12 49 7
 1 0 249844 17748 18544 1222468 0 0 40968 8 1266 1164 17 9 59 16
 1 0 249844 17912 18544 1222572 0 0 41344 12 1237 1080 13 8 65 13

Key Data Points

• There are no issues with memory shortages because there is no
sustained swapping activity (si and so). Although the free
memory is shrinking the swpd column does not change.

• There are no serious issues with the CPU. Although there is a bit of
a run queue, the processor is still over 50% idle.

• There are a high amount of context switches (cs) and blocks being
read in (bo).

• The CPU is stalled at an average of 20% waiting on I/O (wa).

Conclusion: A preliminary analysis points to an I/O bottleneck.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 44 of 47

2. Use iostat to determine from where the read requests are being generated.

iostat -x 1
Linux 2.4.21-40.ELsmp (mail.example.com) 03/26/2007

avg-cpu: %user %nice %sys %idle
 30.00 0.00 9.33 60.67

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 7929.01 30.34 1180.91 14.23 7929.01 357.84 3964.50 178.92 6.93 0.39 0.03 0.06 6.69
/dev/sda1 2.67 5.46 0.40 1.76 24.62 57.77 12.31 28.88 38.11 0.06 2.78 1.77 0.38
/dev/sda2 0.00 0.30 0.07 0.02 0.57 2.57 0.29 1.28 32.86 0.00 3.81 2.64 0.03
/dev/sda3 7929.01 24.58 1180.44 12.45 7929.01 297.50 3964.50 148.75 6.90 0.32 0.03 0.06 6.68

avg-cpu: %user %nice %sys %idle
 9.50 0.00 10.68 79.82

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 0.00 1195.24 0.00 0.00 0.00 0.00 0.00 0.00 43.69 3.60 0.99 117.86
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda3 0.00 0.00 1195.24 0.00 0.00 0.00 0.00 0.00 0.00 43.69 3.60 0.99 117.86

avg-cpu: %user %nice %sys %idle
 9.23 0.00 10.55 79.22

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 0.00 1200.37 0.00 0.00 0.00 0.00 0.00 0.00 41.65 2.12 0.99 112.51
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda3 0.00 0.00 1200.37 0.00 0.00 0.00 0.00 0.00 0.00 41.65 2.12 0.99 112.51

Key Data Points

• The only active partition is the /dev/sda3 partition. All other partitions
are completely idle.

• There are roughly 1200 read IOPS (r/s) on a disk that supports
around 200 IOPS.

• Over the course of two seconds, nothing was actually read to disk
(rkB/s). This correlates with the high amount of wait I/O from the
vmstat.

• The high amount of read IOPS correlates with the high amount of
context switches in the vmstat. There are multiple read system
calls issued.

Conclusion: An application is inundating the system with more read requests than
the I/O subsystem can handle.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 45 of 47

3. Using top, determine what application is most active on the system

top -d 1
 11:46:11 up 3 days, 19:13, 1 user, load average: 1.72, 1.87, 1.80
176 processes: 174 sleeping, 2 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 12.8% 0.0% 4.6% 0.2% 0.2% 18.7% 63.2%
 cpu00 23.3% 0.0% 7.7% 0.0% 0.0% 36.8% 32.0%
 cpu01 28.4% 0.0% 10.7% 0.0% 0.0% 38.2% 22.5%
 cpu02 0.0% 0.0% 0.0% 0.9% 0.9% 0.0% 98.0%
 cpu03 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
Mem: 2055244k av, 2032692k used, 22552k free, 0k shrd, 18256k buff
 1216212k actv, 513216k in_d, 25520k in_c
Swap: 4192956k av, 249844k used, 3943112k free 1218304k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
14939 mysql 25 0 379M 224M 1117 R 38.2 25.7% 15:17.78 mysqld
 4023 root 15 0 2120 972 784 R 2.0 0.3 0:00.06 top
 1 root 15 0 2008 688 592 S 0.0 0.2 0:01.30 init
 2 root 34 19 0 0 0 S 0.0 0.0 0:22.59 ksoftirqd/0
 3 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0
 4 root 10 -5 0 0 0 S 0.0 0.0 0:00.05 events/0

Key Data Points

• The mysql process seems to be consuming the most resources.
The rest of the system is completely idle.

• There is a wait on I/O reported by top (wa) which can be correlated
with the wio field in vmstat.

Conclusion: It appears the mysql is the only process that is requesting resources
from the system, therefore it is probably the one generating the requests.

4. Now that MySQL has been identified as generating the read requests, use

strace to determine what is the nature of the read requests.

strace -p 14939

Process 14939 attached - interrupt to quit
read(29, "\3\1\237\1\366\337\1\222%\4\2\0\0\0\0\0012P/d", 20) = 20
read(29, "ata1/strongmail/log/strongmail-d"..., 399) = 399
_llseek(29, 2877621036, [2877621036], SEEK_SET) = 0
read(29, "\1\1\241\366\337\1\223%\4\2\0\0\0\0\0012P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 400) = 400
_llseek(29, 2877621456, [2877621456], SEEK_SET) = 0
read(29, "\1\1\235\366\337\1\224%\4\2\0\0\0\0\0012P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 396) = 396
_llseek(29, 2877621872, [2877621872], SEEK_SET) = 0
read(29, "\1\1\245\366\337\1\225%\4\2\0\0\0\0\0012P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 404) = 404
_llseek(29, 2877622296, [2877622296], SEEK_SET) = 0
read(29, "\3\1\236\2\366\337\1\226%\4\2\0\0\0\0\0012P/d", 20) = 20

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 46 of 47

Key Data Points

• There are a large amount of reads followed by seeks indicating that
the mysql application is generating random I/O.

• There appears to be a specific query that is requesting the read
operations.

Conclusion: The mysql application is executing some kind of read query that is
generating all of the read IOPS.

5. Using the mysqladmin command, report on which queries are both dominating
the system and taking the longest to run.

./mysqladmin -pstrongmail processlist

+----+------+-----------+------------+---------+------+----------+--
| Id | User | Host | db | Command | Time | State | Info
+----+------+-----------+------------+---------+------+----------+--
| 1 | root | localhost | strongmail | Sleep | 10 | |
| 2 | root | localhost | strongmail | Sleep | 8 | |
| 3 | root | localhost | root | Query | 94 | Updating | update `failures` set
`update_datasource`='Y' where database_id='32' and update_datasource='N' and |
| 14 | root | localhost | | Query | 0 | | show processlist

Key Data Points

• The MySQL database seems to be constantly running an update
query to a table called failures.

• In order to conduct the update, the database must index the entire
table.

Conclusion: An update query issued by MySQL is attempting to index an entire table
of data. The amount of read requests generated by this query is devastating system
performance.

Performance Follow-up
The performance information was handed to an application developer who
analyzed the PHP code. The developer found a sub-optimal implementation in
the code. The specific query assumed that the failures database would only scale
to 100K records. The specific database in question contained 4 million records.
As a result, the query could not scale to the database size. Any other query (such
as report generation) was stuck behind the update query.

Linux Performance Monitoring

Copyright 2007 Darren Hoch. All rights reserved. 47 of 47

References
• Ezlot, Phillip – Optimizing Linux Performance, Prentice Hall,

Princeton NJ 2005 ISBN – 0131486829

• Johnson, Sandra K., Huizenga, Gerrit – Performance Tuning for
Linux Servers, IBM Press, Upper Saddle River NJ 2005 ISBN
013144753X

• Bovet, Daniel Cesati, Marco – Understanding the Linux Kernel,
O’Reilly Media, Sebastoppl CA 2006, ISBN 0596005652

• Understanding Virtual Memory in RedHat 4, Neil Horman, 12/05
http://people.redhat.com/nhorman/papers/rhel4_vm.pdf

• IBM, Inside the Linux Scheduler,
http://www.ibm.com/developerworks/linux/library/l-scheduler/

• Aas, Josh, Understanding the Linux 2.6.8.1 CPU Scheduler,
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf

• Wieers, Dag, Dstat: Versatile Resource Statistics Tool,
http://dag.wieers.com/home-made/dstat/

