

Building an Enterprise Nagios Framework

Release 2.3.4 - February 2005

Building an Enterprise Nagios Framework

PUBLISHED BY:
Darren Hoch
hochdarren@gmail.com

Copyright © 2008 Darren Hoch. All Rights Reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the Darren Hoch.

More Technical Papers and Code Available at:

http://www.ufsdump.org

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 4 of 43

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 5 of 43

Table of Contents
1.0 Introduction ..7

1.1 Brief Overview of Nagios Concepts ...7

1.2 Nagios Client – NRPE Agent ...8

1.3 Nagios Objects...9

1.4 Object Configuration Parameters...9

1.5 Basic Object Configuration ..10

1.6 Nagios Alerting...11

1.6.0 Host Checks .. 11

1.6.1 Service Checks.. 11

1.7 Nagios Web Management Interface ..13

2.0 Enterprise Nagios Deployment ...15

3.0 Enterprise Setup - Global Object Configuration............................16

3.1 Global Object Templates ...17

3.2 Global Time and Contact Object Templates ..18

3.2.0 Master Time Configuration .. 18

3.2.1 Master Contact Configuration.. 19

3.2.2 Master Host and Service Configuration... 21

3.2.2.0 Global Host Configuration Objects ... 21

3.2.2.1 Global Service Configuration Objects... 23

3.3 Global Object Review ..26

4.0 Individual Host and Service Objects ..27

4.1 Grouping Hosts and Services ..27

4.1.0 Creating a Contact Group.. 27

4.1.1 Defining a Host .. 29

4.1.2 Define a Service .. 31

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 6 of 43

4.2 Individual Host and Service Review ...32

5.0 Reducing False Positives ..33

5.1 Tuning Check Intervals ..33

5.2 Service Dependencies ...34

6.0 Master Escalation Configuration ..34

7.0 Nagios Master and Slave Setup ..38

7. 1 Limitations of Master/Slave Setup ..38

7.2 Sending Passive Checks to the Slave ...39

8.0 Conclusion..42

References..43

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 7 of 43

1.0 Introduction
The goal of this paper is to provide a framework for deploying Nagios on an enterprise
scale. This paper does not cover how to setup Nagios nor is it a “cookbook” for deploying
Nagios. It describes how to leverage the features built into Nagios to build a scalable
enterprise monitoring infrastructure.

There is ample documentation on the web on Nagios installation and configuration on the
Nagios website (http://www.nagios.org). Within the website, there is a very simple
quick start guide to setup a Nagios Management Server with minimal effort.
(http://nagios.sourceforge.net/docs/3_0/quickstart.html).

Nagios also has many well written books (many used for this paper) that describe in
detail how to setup and configure Nagios. These include:

• “Nagios System and Network Monitoring” – Wolfgang Barth
• “Pro Nagios 2.0” – James Turnbull
• “Building a Monitoring Infrastructure with Nagios” – David

Josephsen

This paper does not cover the installation and configuration of Nagios. If you have
not setup Nagios before, this paper may be of limited value.

1.1 Brief Overview of Nagios Concepts
The Nagios Management Server (NMS) daemon is called nagios. The NMS
consists of a master daemon that executes checks on configured objects.
Objects are containers of information that describe what, how often, and who
should be notified about a host or service.

Object configurations are discussed later in this paper.

The (NMS) provides 4 main functions:

• Check scheduling – uses an algorithm (as opposed to a static
timer like cron) to schedule the execution of checks on particular
host or service

• Check execution – executes a check (a Nagios plugin), which is
lightweight compiled binary or text script

• Response handling – process response codes from check
execution and takes action based on response

• Alerting – generates and sends alerts to appropriate contacts or
contact groups

The daemon process:

ps -ef | grep nagios
nagios 2379 1 0 12:45 ? 00:00:06 /usr/sbin/nagios -d
/etc/nagios/nagios.cfg

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 8 of 43

The main configuration file is nagios.cfg.

ls -l /etc/nagios/nagios.cfg
-rw-rw-r-- 1 nagios nagios 42773 Jun 13 17:33 /etc/nagios/nagios.cfg

The NMS configuration file specifies additional object configuration files that
contain objects for the NMS to monitor:

more /etc/nagios/nagios.cfg

<snip>

cfg_file=/etc/nagios/objects/sm_contacts.cfg
cfg_file=/etc/nagios/objects/sm_master_escalation.cfg
cfg_file=/etc/nagios/objects/sm_master_host.cfg
cfg_file=/etc/nagios/objects/sm_master_service.cfg
cfg_file=/etc/nagios/objects/sm_master_service_groups.cfg
cfg_file=/etc/nagios/objects/sm_master_time.cfg
cfg_file=/etc/nagios/check_nrpe_command.cfg

1.2 Nagios Client – NRPE Agent
The NRPE client runs on any system that the NMS monitors. The NRPE daemon
listens for requests from the NMS to execute checks. Once it receives a request
for a check, the NRPE daemon executes the system checks locally by executing
the appropriate plugin and sending the result back to the Nagios server.

The NRPE daemon is not a requirement to run the Nagios. Without the NRPE
daemon, Nagios will be limited to running checks on publicly exposed services
(checking ports and banners, for example). The NRPE daemon allows for a NMS to
check services that are not publicly and require local execution of the check.

The NRPE daemon on the client system:

ps -ef | grep nrpe
nagios 1818 1 0 12:50 ? 00:00:00 /usr/sbin/nrpe -c
/etc/nagios/nrpe.cfg –d

The NRPE daemon executes a local check of a service by executing a plugin.
The plugin execution is defined in the /etc/nagios/nrpe.cfg file:

cat /etc/nagios/nrpe.cfg

<snip>

command[check_users]=/usr/lib/nagios/plugins/check_users -w 5 -c 10

<snip>

All of the plugins are located in /usr/lib/nagios/plugins:

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 9 of 43

ls /usr/lib/nagios/plugins/
check_apt check_dns check_ide_smart check_log check_ntp
check_real check_swap utils.pm
check_breeze check_dummy check_ifoperstatus check_mailq check_ntp_peer
check_rpc check_tcp utils.sh
check_by_ssh check_file_age check_ifstatus check_mrtg check_ntp_time
check_sensors check_time

<snip>

Any plugin may be executed from the command line. This output is what is sent
back to the NMS:

/usr/lib/nagios/plugins/check_users -w 3 -c 10
USERS OK - 2 users currently logged in |users=2;3;10;0

The NRPE daemon runs on port 5666 by default and uses SSL (if compiled with SSL).

1.3 Nagios Objects
Nagios configuration is built on an object model. An object in Nagios is defined
as a set of configuration parameters (hostname or IP address, for example).
Nagios objects are defined in the /etc/nagios/*.cfg files on the Nagios
Management Server.

There are many objects in Nagios:

• Host objects – defines the characteristics of a single host such as
IP address and hostname

• Host groups – defines a series of hosts as a single object (hostA
and hostB make up the “Servers” group, for example)

• Services – defines what and how to perform a check

• Service groups – defines a series of services to check at once

• Contacts – defines a person or people to contact and a means to
contact them

• Contact groups – defines a series of contacts to alert

• Commands – defines how a check should be run (perform an
SMTP check with a “-H” option, for example)

• Escalation objects – defines contact escalation paths if an alert is
not addressed

1.4 Object Configuration Parameters
Each object in Nagios contains multiple configuration parameters. These
parameters and standard name value pairs. Each object has a minimum set of
these parameters.

The following example lists the minimum parameters required to define a host
object.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 10 of 43

define host{
 host_name acme-01
 alias Acme Appliance 01
 address 10.0.1.212
 }

The parameters are described below:

• host_name – the name of the system to be monitored

• alias – a more friendly name to be used for a management UI

• address – the IP address of the system to be monitored

1.5 Basic Object Configuration
A typical Nagios installation contains at least 1 host, contact and service object
along with a series of pre-defined command objects. The following are three
objects monitor the amount of UNIX users on a host called acme-01 and send
both alerts for host and services to dhoch@acme.com

Monitor the host acme-01:

define host{
 use acme-host
 host_name acme-01
 alias Acme Appliance 01
 address 192.168.1.61
 }

Monitor the amount of UNIX users logged into the system. Notice that the
configuration here is instructing the NMS to execute the check remotely via the
NRPE configuration. The NMS is going to send a request to NRPE on the host
acme-01 to run the check_users command on acme-01 and return the
results.

define service{
 use acme-service-15m
 host_name acme-01
 service_description UNIX Users
 check_command check_nrpe!check_users
 }

Send email alerts for both host and service problems to dhoch@acme.com:

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 11 of 43

define contact{
 contact_name acme
 alias Acme Customer
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email dhoch@acme.com
 }

1.6 Nagios Alerting
The NMS processes the responses back from the NRPE daemon. Based on the
response code, the NMS determines whether or not to trigger an alert. If the
NMS triggers an alert, it them determines who should receive the alert as defined
by the contact object related to the service.

Alerting contacts based on the time the alert was generated is controlled by time
objects. Using time objects to send alerts to different support groups is covered
later in this paper.

1.6.0 Host Checks

The conducts a basic check on any host defined in an object. It uses the ICMP
ping command to determine if a system is up and running.

If the NMS manages systems across the Internet and ping is disabled at a firewall,
the NMS will generate an alert that the host is down.

The following are the host status response codes.

• OK – the host is up and available

• DOWN – the host is unavailable

• UNREACHABLE – the check never reached the host (intermediate
network problem, for example)

1.6.1 Service Checks

The following are individual service check response codes:

• OK – service is functioning normally

• WARNING – a service is reaching a user defined threshold (disk
85% full, for example)

• CRITICAL – a service has reached the top of a threshold or is down
(disk is 100% full, for example)

• UNKNOWN – the NMS can’t determine the state of the service due
to a plugin error or malformed response

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 12 of 43

Nagios alerts may be sent based on any of the previously mentioned states in
addition to some other conditions.

Nagios alerts may be issued on the following conditions:

• Host unreachable, down or ok
• Service unknown, critical, warning or ok
• Service recovers from previous failed state

Figure 1: Nagios Architecture

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 13 of 43

1.7 Nagios Web Management Interface
Nagios provides an optional web user interface (UI) to administer Nagios. The
web UI has the following features:

• Real time reports of host and service status by individual hosts
and services or host groups and service groups

• Contact group information
• Network topology graphs
• Log file viewing and analysis
• The ability to run “external commands” like enabling, disabling

or restarting a check on a specific service.
The Nagios Web UI is configured by default to run with the version of Apache
that ships with Red Hat. It is possible to use any web server or configuration if
needed. The Nagios Web UI supports HTTP authentication and SSL. These
features are setup during the Nagios server installation.

The URL to the UI is located here:

https://nagios.acme.com/nagios

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 14 of 43

Figure 2: Nagios Web Interface

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 15 of 43

2.0 Enterprise Nagios Deployment
A default Nagios installation is suitable for a flat network of 1 – 10 server systems with
one systems administrator. In order to scale Nagios to span multiple networks and
groups, many of the features of the software need to be leveraged.

The following areas of the default installation need to be addressed when moving Nagios
into the Enterprise:

• Single contact for alerts 24x7 – This does not accommodate a 2 or 3 shift
workday with multiple contacts spread across multiple locations.

• No ability to route alerts based on a grouping of hosts or systems – What if
different managers must be alerted for different systems in addition to the
support staff?

• No escalation alerts – What if the primary oncall resource is not available?

• Single host, service and alert configuration file – All objects are organized
around a single system. There are no global configurations across all systems.

• False positives – Network latency across a WAN often contributes to the
generation of a false positive.

The rest of this paper describes how to create and enterprise scalable Nagios
deployment. The following are the core building blocks of this architecture:

• Global object creation

• Host/Service groupings

• Reducing false positives

• Building escalation paths

• Creating a master/slave setup

This paper assumes that the reader is familiar enough with Nagios and is capable of
installing and setting up the default configuration.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 16 of 43

3.0 Enterprise Setup - Global Object Configuration
In order to effectively manage an infrastructure across many locations and networks,
systems need to be grouped. For example, there may be a Sendmail cluster in data
center A (DCA) and a cluster at the DR datacenter B (DCB). In addition to grouping
systems based on location or function, different sets of administrators may be
responsible for different groupings of systems. In a 24x7 operation, different groups of
administrators working different shifts may also need to be alerted based on time.

In order to scale the monitoring of systems across data centers, administrators, and time
periods, a series of “Global” configuration objects must be created. These global objects
define the key components of the IT administration: what boxes, who monitors them, and
when should they be monitored?

The following sections describe how to configure these objects based on a simulated IT
monitoring environment for a company called “Acme” with the following attributes:

• What boxes? – a cluster of Apache and Sendmail servers
• Who monitors them? – There are two support teams. One resides

in the US and one in India 24x5. A primary and secondary oncall
engineer monitor the boxes over the weekends.

• When should they be monitored? – The US team monitors the
infrastructure during US hours during the week. The India support
team monitors the infrastructure all other hours during the week.
The primary oncall engineer monitors the infrastructure Friday night
until Sunday night. If the engineer does not respond, a secondary
engineer receives alerts via an escalation path.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 17 of 43

3.1 Global Object Templates
The success of a global object configuration works off of the concept of object
templates. A template defines a list of values that apply to all objects in a
configuration. Individual objects may then inherit these values by referencing the
object template in their own template.

The following templates form the base of the global monitoring objects:

• Master Time Template – this template defines all of the time period
objects required by all other objects

• Master Contact Template – this template defines the primary,
secondary and fall back contacts

• Master Host and Service Templates – this template defines the
global characteristics of host and service checking

• Generic Host Group Template – a generic template exists on the
Nagios master server and is copied and modified to setup a new
grouping of hosts and services that can be based on service type or
location

• Master Escalation Template – this template defines the escalation
paths when alerts are not addressed

In the following example, the object that defines the oncall engineer contact
(primary-oncall) inherits the monitoring times from a global template object
(on-call-hours).

Figure 3: Object Inheritance and Templates

For the examples used in this paper, the master object templates are stored in
/etc/nagios/objects.

ls /etc/nagios/objects/*master*
sm_master_escalation.cfg sm_master_service.cfg
sm_master_time.cfg
sm_master_contacts.cfg sm_master_host.cfg
sm_master_service_groups.cfg

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 18 of 43

3.2 Global Time and Contact Object Templates
The first step in defining a Nagios enterprise architecture is to figure out who will
be alerted and when. The following sections will provide a global object
configuration that supports routing of alerts to the appropriate IT staff. The overall
goals for this architecture include:

• Systems monitoring and alerting 24x7
• A 24x7 support staff split between the US and India
• Alert routing to the correct support staff based on their hours

of operation

3.2.0 Master Time Configuration

Time configuration is the most crucial part of the global object configuration. Time
objects must be created for two discrete purposes: define when a system will be
monitored and define when different groups receive alerts.

In the following example. the first object defines a 24x7 monitoring period that will
be used for hosts and services:

more /etc/nagios/objects/sm_master_time.cfg
define timeperiod{
 timeperiod_name 24x7
 alias 24 Hours A Day, 7 Days A Week
 sunday 00:00-24:00
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 saturday 00:00-24:00
 }

Optionally, if there are services that only need to be monitored during the work
week (14x5), the object looks like this:

define timeperiod{
 timeperiod_name 14x5
 alias 14 Hours A Day, 5 Days A Week
 monday 06:00-20:00
 tuesday 06:00-20:00
 wednesday 06:00-20:00
 thursday 06:00-20:00
 friday 06:00-20:00
 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 19 of 43

The next set of time template objects define the time periods that the two
different contact groups (US and India) work:

define timeperiod{
 timeperiod_name us-hours
 alias US Working Hours
 monday 06:00-20:00
 tuesday 06:00-20:00
 wednesday 06:00-20:00
 thursday 06:00-20:00
 friday 06:00-20:00
 }

define timeperiod{
 timeperiod_name india-hours
 alias India Working Hours
 sunday 20:01-24:00
 monday 00:00-05:59,20:01-24:00
 tuesday 00:00-05:59,20:01-24:00
 wednesday 00:00-05:59,20:01-24:00
 thursday 00:00-05:59,20:01-24:00
 friday 00:00-05:59
 }

The last object defines when the time period for the primary oncall engineer:

define timeperiod{
 timeperiod_name on-call-hours
 alias Weekend On-call Hours
 friday 20:01-24:00
 saturday 00:00-24:00
 sunday 00:00-20:00
 }

3.2.1 Master Contact Configuration

Now that the time object templates are present, we define the contact groups.
The contact groups inherit their monitoring times from the global time templates.

• Primary on call engineer
• Secondary on call engineer
• India support contact
• US support contact

The most important parameter to note in the master contact templates is the
service_notification_period and host_notification_period. These
define when a specific contact should receive alerts.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 20 of 43

The first object defines the contact information for the US based support group.
The US team uses an email alias called support@acme.com to communicate
and inherits the time template us-hours from the global time template file.

more /etc/nagios/sm_master_contacts.cfg
define contact{
 contact_name us-technical-support
 alias US Support Alias
 service_notification_period us-hours
 host_notification_period us-hours
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email support@acme.com
 }

The next two objects define the primary and secondary oncall engineers for the
weekends. Both also pick up their time periods from the global time objects.

define contact{
 contact_name primary-oncall
 alias Primary Oncall Engineer
 service_notification_period on-call-hours
 host_notification_period on-call-hours
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email oncall1@acme.com
 }

define contact{
 contact_name secondary-oncall
 alias Secondary Oncall Engineer
 service_notification_period on-call-hours
 host_notification_period on-call-hours
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email oncall2@acme.com
 }

The fourth contact group is the India based support team who, like the others,
inherit their time from the global time objects.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 21 of 43

define contact{
 contact_name india-team
 alias India Support Team
 service_notification_period india-hours
 host_notification_period india-hours
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email indiateam@acme.com
 } bob@example.com
 }

3.2.2 Master Host and Service Configuration

The next step in creating an enterprise Nagios monitoring infrastructure is to
define global objects for both hosts and systems. There are a generic set of
actions Nagios should take across all hosts and services. These include when
and how often to monitor and when to send an alert.

The following subsections define how to accomplish the following goals for hosts
and services:

• Enable 24x7 and 14x7 monitoring
• Enable 15 minute and 24 hour checks
• Determine how much time to wait before considering a

host/service to be down

3.2.2.0 Global Host Configuration Objects

Not every enterprise host needs to be monitored 24x7. Some hosts need
monitoring during business hours only. In order to accomplish this in Nagios,
there needs to be a total of 3 objects:

• Generic 24x7 host monitoring object
• 24x7 notification object
• 14x5 notification object

Note the difference between monitoring and notification. Nagios will monitor the
hosts 24x7, but will only send notifications if the alert falls within the defined
notification window.

In order to build two different notification objects, we must first define a generic
monitoring object for both notification objects to inherit.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 22 of 43

The following is a generic 24x7 monitoring object:

more /etc/nagios/sm_master_host.cfg
define host{
 name generic-host
 active_checks_enabled 1
 passive_checks_enabled 0
 check_freshness 0
 freshness_threshold 600
 notifications_enabled 1
 event_handler_enabled 1
 flap_detection_enabled 1
 failure_prediction_enabled 1
 process_perf_data 1
 retain_status_information 1
 retain_nonstatus_information 1
 check_period 24x7
 register 0
 }

The most important configuration parameter here is the check_period
parameter with of value of 24x7. This value is inherited from the
sm_master_time.cfg file discussed earlier.

The next two objects inherit the values from the generic host (generic-host)
object and define when to send alert notifications via the
notification_period parameter:

define host{
 name notify-24x7
 use generic-host
 max_check_attempts 30
 check_command check-host-alive
 notification_period 24x7
 notification_interval 15
 notification_options d,u
 register 0
 }

define host{
 name notify-14x5
 use generic-host
 max_check_attempts 15
 check_command check-host-alive
 notification_period 14x5
 notification_interval 15
 notification_options d,u
 register 0
 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 23 of 43

Both of these objects inherit the 24x7 monitoring object. The difference lies in the
notification objects. Individual host objects inherit either the notify-14x5 (non-
mission critical) or the notify-24x7 (mission critical) templates based on the
monitoring SLA for that host.

Figure 4: Template object inheritance of the notify-14x5 template host object

define timeperiod{
 timeperiod_name 24x7
 alias 24 Hours A Day, 7 Days A Week

 <snip>
 }

more /etc/nagios/sm_master_host.cfg
define host{
 name generic-host

 <snip>

 check_period 24x7
 register 0
 }

define host{
 name notify-14x5
 use generic-host
 max_check_attempts 30
 check_command check-host-alive

notification_period 14x5
 notification_interval 15
 notification_options d,u
 register 0
 }

define timeperiod{
 timeperiod_name 14x5
 alias 14 Hours A Day, 5 Days A Week

 <snip>
 }

3.2.2.1 Global Service Configuration Objects

The global configuration of services is exactly identical to the configuration of
hosts in terms of a 24x7 and a 14x5 notification period. Some services are
mission critical and others are not. In addition to when services are checked,
Nagios offers the frequency in which services are checked.

The parameter that checks frequency is called normal_check_interval.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 24 of 43

Global service template objects start with a generic service object:

more /etc/nagios/objects/sm_master_service.cfg
define service{
 name generic-service
 active_checks_enabled 1
 passive_checks_enabled 1
 parallelize_check 1
 obsess_over_service 1
 check_freshness 0
 notifications_enabled 1
 event_handler_enabled 1
 flap_detection_enabled 1
 failure_prediction_enabled 1
 process_perf_data 1
 retain_status_information 1
 retain_nonstatus_information 1
 is_volatile 0
 register 0
}

Mission critical services need to be monitored 24x7 and checked as frequently as
possible. Non-mission critical services can be monitored 24x5 and checked less
frequently. The following sets of objects define both a 15 minute interval and 24
hour interval object. Both inherit the generic-service object.

The first object is the mission critical object for a service. It checks every 15
minutes and monitors/alerts 24x7.

define service{
 name 15min-24x7
 use generic-service
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 15
 retry_check_interval 5
 notification_options u,c
 notification_interval 15
 notification_period 24x7
 register 0

 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 25 of 43

The following object checks a service every 15 minutes 24x7 but only notifies
14x5.

define service{
 name 15min-14x5
 use generic-service
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 15
 retry_check_interval 5
 notification_options u,c
 notification_interval 15
 notification_period 14x5
 register 0
 }

The next object is defined for non-mission critical systems. The object checks a
service once a day and sends notifications 14x5. The only value that changes is
the normal_check_interval (in minutes) from 15 to 1440.

define service{
 name 24-14x5
 use generic-service
 check_period 24x7
 max_check_attempts 1
 normal_check_interval 1440
 retry_check_interval 15
 notification_options u,c
 notification_interval 15
 notification_period 14x5
 register 0
 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 26 of 43

Figure 5: Template object inheritance for a 15 minute checks 14x5 of a service

3.3 Global Object Review
All global objects have been successfully configured to align Nagios with the IT
organization’s 24x7 support staff. The global objects define the following
behaviors:

• All hosts and services are monitored 24x7
• Nagios monitors hosts continuously and services at either 15

minute or 24 hour intervals depending on the service
• Nagios sends alerts on mission critical services 24x7 and non-

mission critical services 14x5
• Alerts are routed to the primary on call during US hours and

the India support team during all other hours

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 27 of 43

4.0 Individual Host and Service Objects
After the completion of the global object configuration, it is now possible to create
individual host and service objects. Enterprise infrastructures may have hundreds of
systems and thousands of service to monitor. These resources are often grouped by a
specific task (web servers, routers, databases, etc). Therefore, it would make sense to
group host and service objects by function.

The following sections group hosts and services to accomplish the following
organizational goals:

• Add an additional contact to receive alerts per each group (a
manager of the mail servers, for example)

• Group hosts and services by functions (web servers, mail
servers, etc)

• Check services across all hosts on either 15 minute or 24 hour
intervals

• Present a monitoring view in the Nagios Web UI of all services
across hosts

The following sections will outline how to create a grouping of web servers and
sendmail servers.

4.1 Grouping Hosts and Services
Nagios object configurations may be maintained in any number of configuration
files. In a global organization, there are multiple IT managers and stakeholders.
Most organizations have groups like network, systems, storage, etc. Each one of
these groups may have a different management structure.

The first step in grouping hosts and services is to create one configuration file per
grouping. In the following example, the systems, hosts, and contacts are grouped
by type of service: email (email.cfg) and web server (web-server.cfg).
Each set of services are managed by a different manager or key IT stakeholder.

4.1.0 Creating a Contact Group

The first part of each of these files contains an additional contact object. This
contact object enables you to define a manager or IT stakeholder for just the
group of hosts and services without modifying the global object templates.

The following object defines the contact information for the manager of the email
server cluster.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 28 of 43

more /etc/nagios/services/email.cfg
define contact{
 contact_name Manager
 alias Email Server Manager
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-by-email
 host_notification_commands host-notify-by-email
 email emailmanager@acme.com
 }

We have declared that Manager will receive alerts 24x7 for any hosts or systems
in the email group. In order to add the manager to the global contact list, he or
she must be included in a contact group for the email group.

The next object to be defined in the email configuration group is the contact
group who should receive alerts for the email servers.

 define contactgroup{
 contactgroup_name email-group
 alias Email Group Contacts
 members us-support,India-support,primary-oncall,Manager
 }

In order for Manager to receive alerts for just the email systems, generic host and
service templates must be configured that define the email contact group. The
actual hosts and services will import the values in these generic objects.

The following is an example of a generic email host template:

define host{
 name email-host
 use notify-24x7
 contact_groups email-group
 register 0
 }

Likewise, there is a service object that defines how often the service should be
checked. Since email is mission critical, this service will be checked every 15
minutes 24x7:

define service{
 name email-service-15m
 use 15min-24x7
 contact_groups email-group
 register 0
 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 29 of 43

In the previous example, we have built a contact group that now includes
Manager. We have also included the India team and the primary on call. It is
important to note how this individual contact group will relate to the global contact
and alerting configuration. If Nagios generates an alert for any email systems, it
will be routed the following ways:

• Manager – all alerts all the time
• primary-oncall – on weekends
• support-team – only during US based hours
• India-team – only during India hours

 The previous template examples can easily be modified to create a grouping of
other servers (web or mail, for example).

4.1.1 Defining a Host

The actual hosts to be monitored are now defined in the group configuration file.
The following example defines two individual database hosts called acme-01
and acme-02. You can add as many hosts as needed in the configuration file.

define host{
 use email-host
 host_name acme-01
 alias Sendmail Server 1
 address 192.168.1.110
 }

define host{
 use email-host
 host_name acme-02
 alias Sendmail Server 2
 address 192.168.1.111
 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 30 of 43

Figure 6: Individual host object template inheritance

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 31 of 43

4.1.2 Define a Service

The last step in this process is defining the actual service to be checked. This
step is rather simple at this point given that most of the configuration has been
completed. Services may be monitored at the host or host group level. In an
enterprise infrastructure, it is far more scalable to create groups of many hosts
and then monitor by group as opposed to defining individual host systems.

The following object defines the two previously defined host systems into a single
host group called email-systems:

define hostgroup{
 hostgroup_name email-systems
 alias Email Systems
 members acme-01, acme-02
 }

In the following example, two service checks define using the NRPE framework.
The first checks the status of a disk on 24 hour intervals and the second checks
system load every 15 minutes.

define service{
 use email-service-24
 hostgroup_name email-systems
 service_description System - Disk
 check_command check_nrpe!check_disk
 }

define service{
 use email-service-15m
 hostgroup_name email-systems
 service_description System - Process Load
 check_command check_nrpe!check_load
 }

The following figure demonstrates the relationship of the service objects.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 32 of 43

Figure 7: Individual service object inheritance template

more /etc/nagios/objects/sm_master_service.cfg
define service{
 name generic-service

active_checks_enabled 1
<snip>
}

define service{
 name 15min-24x7
 use generic-service
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 15
 retry_check_interval 5
 notification_options u,c
 notification_interval 15
 notification_period 24x7

register 0
}

define service{
 use email-service-15m
 hostgroup_name email-systems
 service_description System - Process Load
 check_command check_nrpe!check_load
 }

define service{
 name email-service-15m
 use 15min-24x7
 contact_groups email-group
 register 0
 }

define hostgroup{
 hostgroup_name email-systems
 alias Email Systems
 members acme-01, acme-02
 }

GLOBAL TEMPLATE

GLOBAL TEMPLATE

LOCAL TEMPLATE

SERVICE OBJECT

HOST GROUP OBJECT

4.2 Individual Host and Service Review
Now that both global and individual objects are completely setup, the following goals
have been accomplished:

• Create logical groupings of hosts/services across the
enterprise

• Enable both alerts for global support staff and specific
stakeholders in a technology grouping

• Ability to easily add and remove both contacts, hosts per
service grouping

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 33 of 43

5.0 Reducing False Positives
The default Nagios configuration is tuned for a flat LAN based network of hosts and
services. This configuration does not take into account network latency, scheduled down
time, and host dependencies. For example, the NMS may need to check 15 hosts behind
a router. If the router itself is unreachable, the NMS will flood the system with alert
messages stating that all 15 hosts are down when in reality, just the router is down.

The following are 2 methods to reduce the amount of false positives in an enterprise
configuration of Nagios: tuning check intervals and defining service dependencies.

5.1 Tuning Check Intervals
In large distributed networks there are many instances when a host or service
may be temporarily unavailable. Some examples include: a network route drops,
a system panics and reboots, significant network latency, a system administrator
accidentally brings a system into single user mode.

Tuning the check intervals down to account for these variances in global
networks may reduce some of these false positives.

There are 4 main parameters that define when a service should be checked:

• max_check_attempts – Defines how many times the NMS
should check on a service (soft failure) before considering the
service critical (hard failure).

• normal_check_interval – Defines the interval period between
checks when the NMS receives and OK from the service.

• retry_check_interval – Defines the interval period between
checks when the NMS receives a CRITICAL from the service.

• notification_interval – Defines how often the named
contact or contact group should receive an alert while the NMS
receives CRITICAL messages.

The following example settings allow for up to 15 minute outages of a service
and will send alerts every 15 minutes until the service recovers from critical.

max_check_attempts 3
normal_check_interval 15
retry_check_interval 5
notification_interval 15

In addition to lengthening the time to allow for blips, reducing the notifications to
just UNREACHABLE and CRITICAL will also cut down on alerts. In a 24x7
environment, any CRITICAL message will receive administrator attention to
resolve the issue. Therefore, it is implied the service will eventually recover.
Hence the RECOVER notification is implied and does not need to be an alert:

notification_options u,c

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 34 of 43

5.2 Service Dependencies
Service dependencies suppress active checking and notification of services
dependent on other services. For example, a web server and a database server
deliver a web application. If the state of either service is unknown or critical, then
the whole web application is offline. There is no sense in checking either service
until the service that generated the alert is fixed.

When a service enters into an UNKNOWN state, it is possible that connectivity to a
server has been dropped. As a result, it is possible that the NMS will generate a
storm of UNKNOWN alert messages for each service. Using service
dependencies cuts down on these unnecessary notifications.

In the following example, the NMS stops checking and notifying for the SMTP
servers if the HTTP servers are in an UNKNOWN or CRITICAL state.

define serviceescalation{
 hostgroup_name email-servers
 service_description *
 dependent_servicegroup_name web-servers
 dependent_service_descritpion *
 execution_failure_criteria u,c
 notification_failure_criteria w,u,c
}

Host dependencies also exist for Nagios, as well as the parent directive. The
parent directive helps determine which hop in a network is down, but does not
suppress notifications or alerts.

6.0 Master Escalation Configuration
In the event that a primary on call engineer (oncall1) does not respond to an alert sent
to Nagios, an escalation must occur. Nagios supports multiple layers of escalations. In
the following example, we have defined an escalation path that alerts a secondary on call
(oncall2) and tertiary in the event that a primary on call engineer does not respond to a
service alert.

more /etc/nagios/sm_master_escalation.cfg

The secondary oncall receives an alert message if 20 minutes
has lapsed and the service is still critical.

define serviceescalation{
 host_name *
 service_description *
 first_notification 2
 last_notification 3
 notification_interval 20
 contact_groups secondary-oncall-group
 }

The support alias receives an alert message if 60 minutes

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 35 of 43

has lapsed and the service is still critical.

define serviceescalation{
 host_name *
 service_description *
 first_notification 3
 last_notification 3
 notification_interval 20
 contact_groups support-alias
 }

The important parameters here are first_notification and
last_notification. These describe when an escalation should occur. The
secondary oncall engineer should receive an alert the second time the NMS sends an
alert message that a service is down. Given the sample configuration used in this guide,
that escalation should occur roughly 15 minutes after the first alert. In other words, the
primary oncall engineer has 15 minutes to fix the problem and return the service to the
state OK before the secondary oncall engineer will be notified.

The following is a sample of the mail log file on the NMS. By looking at the log file time
stamps, we can see that the NMS sent an alert to the secondary oncall engineer due to
the fact that the state of the service was still CRITICAL.

Jun 14 16:56:01 ng-server sendmail[7217]: m5ELu1uX007215:
to=<oncall1@acme.com>, ctladdr=<nagios@localhost.localdomain> (500/500),
delay=00:00:00, xdelay=00:00:00, mailer=esmtp, pri=120599, relay=acme.com.
[192.168.1.235], dsn=2.0.0, stat=Sent (Ok: queued as 967733A280)

Jun 14 17:19:35 ng-server sendmail[7437]: m5EMJZ1D007435:
to=<oncall2@acme.com>, ctladdr=<nagios@localhost.localdomain> (500/500),
delay=00:00:00, xdelay=00:00:00, mailer=esmtp, pri=120599, relay=acme.com.
[192.168.1.235], dsn=2.0.0, stat=Sent (Ok: queued as 279F73A280)

The escalation contacts described above use contact groups. This enables an
administrator to allow for multiple recipients of a single escalation. The first escalation is
sent to the secondary-oncall-group. This group is defined in the
sm_master_contact.cfg file and consists of the secondary on call engineer.

define contact{
 contact_name secondary-oncall
 alias Secondary Oncall Engineer
 service_notification_period oncall-hours
 host_notification_period oncall-hours
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-by-email
 host_notification_commands host-notify-by-email
 email oncall2@acme.com
 }

define contactgroup{
 contactgroup_name secondary-oncall-group
 alias Secondary Oncall Person

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 36 of 43

 members secondary-oncall
 }

The tertiary escalation goes straight to the US based support alias defined in the
sm_master_contact.cfg file:

define contact{
 contact_name technical-support
 alias Support Alias
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c
 host_notification_options d,u
 service_notification_commands notify-by-email
 host_notification_commands host-notify-by-email
 email support@acme.com
 }

define contactgroup{
 contactgroup_name support-alias
 alias support@example.com
 members technical-support
 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 37 of 43

 Figure 8: Enterprise Nagios Object Configuration

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 38 of 43

7.0 Nagios Master and Slave Setup
The Nagios server maintains limited redundancy via a slave server. This redundancy is
achieved by using the NSCA passive check system. NSCA functions in reverse of NRPE.
It works as a proxy for Nagios results, forwarding them to one or many passive Nagios
hosts. A passive Nagios host is defined as a host that does not execute active checks.

This paper uses this model to create a master and slave setup. The master server
functions normally with one enhancement, the NSCA sending program. The master
conducts standard NRPE checks on systems and receives the results. An additional
global parameter is enabled to then forward the results (after recording them locally) to
the Nagios slave server.

There is an NSCA listener bound on port 5667 on the slave server. The slave server
interprets these as passive checks and has them enabled in the global Nagios
configuration file. Since the active server is doing sufficient checking and forwarding
results, the slave server has active checks and notifications disabled globally.

In order to monitor whether the master service is monitoring, the NRPE service runs on
the slave server. NRPE contains one active check and that is to see if the Nagios
process is running on the master server. As stated before, all customer
checks/notifications are disabled.

In the event that the Nagios process on the master dies, the slave server will send an
email notification to the administrator. The administrator must either restart the Nagios
service on the master server or decide to elevate the slave server to master.

In order to do this, the following steps must take place:

1. Power off the Nagios master server.

2. Enable active checking in the master host/service templates on the slave
server.

3. Reload the Nagios on the slave server.

7. 1 Limitations of Master/Slave Setup
The master/slave setup provides continuity of service at the sacrifice of historical
data. The slave server contains all the same historical data as the master server
due to the replication of the NSCA service on the master. If the master dies and
the slave is elevated, the slave will continue to maintain an accurate history as it
will now conduct active checks of all services.

The problem occurs when the master server is elevated back to master. At this
point, the slave has maintained the latest historical data on customer
hosts/services. There is no way currently to push this data back to the master
server. When the master server resumes, it will be missing the historical data the
slave collected when the master was offline.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 39 of 43

7.2 Sending Passive Checks to the Slave
The NMS must be configured to send check results to the to the NSCA listener
on the slave server. This is controlled by the send_nsca.cfg file (after the
NSCA program has been installed). The only parameters that need to be
modified are the password and encryption method. In the following example, the
password will be used to encrypt results using 3DES.

vi /etc/nagios/send_nsca.cfg

password=strongmail
encryption_method=3

In order to forward results to the Nagios slave, the master must “obsess” over
service checking. This feature must be enabled. Once enabled, Nagios will
execute the commands defined in the ocsp_command and ochp_command.

vi /etc/nagios/nagios.cfg

<snip>

obsess_over_services=1
obsess_over_hosts=1

ocsp_command=send_service_check
ochp_command=send_host_check

<snip>

The administrator must create the send_service_check and
send_host_check commands defined in the nagios.cfg. These are the
commands that will send results to the slave server.

vi /etc/nagios/nsca_commands.cfg

define command{
 command_name send_service_check
 command_line /usr/lib/nagios/plugins/send_service_check
$HOSTNAME$ '$SERVICEDESC$' $SERVICESTATEID$ '$SERVICEOUTPUT$'
 }

define command{
 command_name send_host_check
 command_line /usr/lib/nagios/plugins/send_host_check
$HOSTNAME$ $HOSTSTATEID$ '$HOSTOUTPUT$'
 }

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 40 of 43

As with all other config files, the NSCA command file must be added to the
nagios.cfg.

The send_service_check and send_host_check plugins must be
created by the system administrator. Although defined in a command file, these
do not exist. The IP addresses of the slave server (192.168.29.213) are
defined in the individual plugins.

vi send_service_check
#!/bin/sh
/bin/echo "$1","$2","$3","$4" | /usr/bin/send_nsca -H 192.168.29.213 -p
5667 -c /etc/nagios/send_nsca.cfg -d ","

vi send_host_check
#!/bin/sh

/bin/echo "$1","$2","$3" | /usr/bin/send_nsca -H 192.168.29.213 -p 5667
-c /etc/nagios/send_nsca.cfg -d ","

The slave server contains an exact copy of all objects on the master with one
exception to the configuration. It must be configured to not conduct active checks
and notifications. This will result in duplicate work of both systems. This requires
a modification to the global host and service templates.

slave# more /etc/nagios/objects/sm_master_host.cfg
define host{
 name generic-host
 active_checks_enabled 0
 passive_checks_enabled 1
 check_freshness 0
 freshness_threshold 600
 notifications_enabled 0
 event_handler_enabled 1
<snip>
 }

slave# more /etc/nagios/objects/sm_master_service.cfg
define service{
 name generic-service
 active_checks_enabled 0
 notifications_enabled 0
<snip>
}

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 41 of 43

Figure 9: Master Slave Workflow

C
heck C

ustom
er H

osts/Services via N
R

PE

M
aster forw

ards custom
er

results via N
SC

A

C
heck N

agios Service on
M

aster via N
R

PE

M
aster

Slave

N
SC

A listener accepts custom
er

results as passive checks on port
5667

N
R

PE only does active check of
N

agios process

N
R

PE does active check of
custom

er hosts/services

N
SC

A on m
aster forw

ards
custom

er results to slave

N
R

PE listener responds to
N

agios check

N
R

PE Listeners on custom
ers

send results to m
aster server

N
agios M

aster/Slave Setup for Proactive Services

Failover Process

1. N
agios server running on slave sends C

R
ITIC

A
L alert that the N

agios process
on the m

aster server is dead.

2. P
ow

er off the N
agios m

aster server.

3. E
dit the m

aster host and service tem
plates on the slave server to conduct active

checks and notifications.

4. R
eload N

agios configuration on slave server.

5. S
lave server resum

es active checking of custom
er hosts/services.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 42 of 43

8.0 Conclusion
The previous sections of this paper describe how to organize the features of Nagios in a
way that scales to enterprise deployments. By following the principles outlined in this
paper, a systems administrator should now be able to configure Nagios in a way that
spans multiple groups of hosts, systems, and administrators in a way that yields the most
accurate information.

Building an Enterprise Nagios Infrastructure

Copyright © 2008 Darren Hoch http://www.ufsdump.org. 43 of 43

References

Barth, Wolfgang. Nagios: System and Network Monitoring. San Francisco, CA: No
Starch Press, Inc.. 2006.

Josephsen, David. Building a Monitoring Infrastructure with Nagios. Boston, MA:
Prentice Hall 2007.

Turnbull, James. Pro Nagios 2.0. Berkely, CA: Apress 2006.

