Extreme Linux Performance Monitoring Part I

I. Introducing 10 Monitoring

Disk 10 subsystems are the slowest part of any Linux system. This is due mainly to their distance from the CPU and the
fact that disks require the physics to work (rotation and seek). If the time taken to access disk as opposed to memory was
converted into minutes and seconds, it is the difference between 7 days and 7 minutes. As a result, it is essential that the
Linux kernel minimizes the amount of 10 it generates on a disk. The following subsections describe the different ways the
kernel processes data 10 from disk to memory and back.

Reading and Writing Data - Memory Pages

The Linux kernel breaks disk 10 into pages. The default page size on most Linux systems is 4K. It reads and w rites disk
blocks in and out of memory in 4K page sizes. You can check the page size of your system by using the time command
in verbose mode and searching for the page size:

lusr/bin/tinme -v date
<sni p>
Page size (bytes): 4096

<sni p>
Major and Minor Page Faults

Linux, like most UNIX systems, uses a virtual memory layer that maps into physical address space. This mapping is "on
demand" in the sense that when a process starts, the kernel only maps that which is required. When an application starts,
the kernel searches the CPU caches and then physical memory. If the data does not exist in either, the kernel issues a
major page fault (MPF). A MPF is a request to the disk subsystem to retrieve pages off disk and buffer them in RAM.
Once memory pages are mapped into the buffer cache, the kernel will attempt to use these pages resulting in a minor
page fault (MnPF). A MnPF saves the kernel time by reusing a page in memory as opposed to placing it back on the disk.

In the following example, the time command is used to demonstrate how many MPF and MnPF occurred when an
application started. The first time the application starts, there are many MPFs:

/usr/bin/time -v evolution
<sni p>

Major (requiring I/O page faults: 163
M nor (reclaining a frane) page faults: 5918

<sni p>

© 2007 Darren Hoch - dhoch @strongmail.com

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

The second time evolution starts, the kernel does not issue any MPFs because the application is in memory already:
lusr/bin/time -v evolution
<sni p>

Major (requiring I/O page faults: O
M nor (reclaining a frane) page faults: 5581

<sni p>
The File Buffer Cache

The file buffer cache is used by the kernel to minimize MPFs and maximize MnPFs. As a system generates IO over time,
this buffer cache will continue to grow as the system will leave these pages in memory until memory gets low and the
kernel needs to "free" some of these pages for other uses. The end result is that many system administrators see low
amounts of free memory and become concerned when in reality, the system is just making good use of its caches.

The following output is taken from the / pr oc/ mem nf o file:

cat /proc/mem nfo

MenTot al : 2075672 kB
Menfr ee: 52528 kB
Buf fers: 24596 kB
Cached: 1766844 kB
<sni p>

The system has a total of 2 GB (Menilot al) of RAM available on it. There is currently 52 MB of RAM "free" (Menfr ee),
24 MB RAM that is allocated to disk write operations (Buf f er s), and 1.7 GB of pages read from disk in RAM (Cached).
The kernel is using these via the MnPF mechanism as opposed to pulling all of these pages in from disk. It is impossible
to tell from these statistics whether or not the system is under distress as we only have part of the picture.

Types of Memory Pages

There are 3 types of memory pages in the Linux kernel. These pages are described below:

® Read Pages - These are pages of data read in via disk (MPF) that are read only and backed on disk. These
pages exist in the Buffer Cache and include static files, binaries, and libraries that do not change. The Kernel will
continue to page these into memory as it needs them. If memory becomes short, the kernel will "steal" these
pages and put them back on the free list causing an application to have to MPF to bring them back in.

o Dirty Pages - These are pages of data that have been modified by the kernel while in memory. These pages
need to be synced back to disk at some point using the pdf | ush daemon. In the event of a memory shortage,
kswapd (along with pdf | ush) will write these pages to disk in order to make more room in memory.

® Anonymous Pages - These are pages of data that do belong to a process, but do not have any file or backing
store associated with them. They can't be synchronized back to disk. In the event of a memory shortage, kswapd
writes these to the swap device as temporary storage until more RAM is free ("swapping" pages).

© 2007 Darren Hoch - dhoch @strongmail.com

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

Writing Data Pages Back to Disk

Applications themselves may choose to write dirty pages back to disk immediately using the f sync() orsync() system
calls. These system calls issue a direct request to the IO scheduler. If an application does not invoke these system calls,
the pdf | ush kernel daemon runs at periodic intervals and writes pages back to disk.

ps -ef | grep pdflush
r oot 186 6 0 18:04 7 00: 00: 00 [pdfl ush]

Il. Monitoring 10

Certain conditions occur on a system that create 1O bottlenecks. These conditions may be identified by using a standard
set of system monitoring tools. These tools include t op, vmstat, iostat,andsar. There are some similarities
between the output of these commands, but for the most part, each offers a unique set of output that provides a different
aspect on performance. The following subsections describe conditions that cause 10 bottlenecks.

Condition 1: CPU Wait on 10 - Too Much 10 at Once

In an ideal environment, a CPU splits a percentage of its time between user (65%), kernel (30%) and idle (5%). If 10 starts
to cause a bottleneck on the system, a new condition called "Wait on 10" (WIO) appears in CPU performance statistics. A
WIO condition occurs when a CPU is completely idle because all runnable processes are waiting on 10. This means that
all applications are in a sleep state because they are waiting for requests to complete in the 10 subsystem.

The vinst at command provides WIO statistics in the last 4 fields of output under the "cpu” header.

vnstat 1

procs ----------- MenDry---------- ---swap-- ----- io---- --system- ----cpu----

r b swpd free buff cache Si SO bi bo in Cs us sy id wa
3 2 0 55452 9236 1739020 0 0 9352 0 2580 8771 20 24 0 57
2 3 0 53888 9232 1740836 0 0 14860 0 2642 8954 23 25 0 52
2 2 0 51856 9212 1742928 0 0 12688 0 2636 8487 23 25 0 52

These last 4 columns provide percentages of CPU utilization for user (us), kernel (sys), idle (i d), and WIO (wa). In the
previous output, the CPU averages 50% idle waiting on 10 requests to complete. This means that there is 50% of the
processor that is usable for executing applications, but no applications can execute because the kernel is waiting on 1O
requests to complete. You can observe this in the blocked threads column (b).

It is also worth noting that the major cause of the IO bottleneck is disk reads due to the large amount of disk blocks read
into memory (bi). There is no data being written out to disk as the blocks out (bo) column has a zero value. From this
output alone, it appears that the system is processing a large 10 request.

The sar command without any options also provides CPU percentages that include WIO (% owai t) percentages:

sar 1 100

07:25:55 PM CPU Yser %ni ce %system % owait % dl e
07:25: 56 PM al | 74. 26 0. 00 25.74 0. 00 0. 00
07:25: 57 PM al | 52. 00 0. 00 31.00 16. 00 1.00
07: 25:58 PM al | 12. 87 0. 00 13. 86 73. 27 0. 00

© 2007 Darren Hoch - dhoch @strongmail.com 3

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

The sar command with the - B option provides statistics on kilobytes read (pgpgi n/ s) and written out (pgpgout / s) of
memory that may be correlated with the bi and bo columns of virst at . The sar - B command also shows MnPF
(faul t/s) and MPF statistics (maj fl t/s).

sar -B 1 100
07:28:23 PM pgpgin/s pgpgout/s fault/s nmajflt/s

07:28:24 PM 6653. 47 463. 37 1604. 95 74. 26
07:28:25 PM 7448.00 96. 00 2061. 00 79. 00
07:28:26 PM 4190. 10 118. 81 723.76 30. 69
07:28:27 PM 2966. 34 146. 53 525.74 9.90
07:28:28 PM 3728.00 0. 00 146. 00 6. 00
07:28:29 PM 5244.00 580. 00 927. 00 39. 00

There is no exact tool that can identify which application is causing the 10 read requests. The t op tool can provide
enough insight to make an educated guess. Start the t op command with a delay of 1 second:

top -d 1

Once t op is running, sort the output by faults (MPF and MnPF) by typing "F" to bring up the sort menu and "u" to sort by
faults.

top -d 1

top - 19:45:07 up 1:40, 3 users, |oad average: 6.36, 5.87, 4.40

Tasks: 119 total, 3 running, 116 sl eeping, 0 stopped, 0 zonbie

Cpu(s): 5.9%us, 87.1%sy, 0.0%ni, 0.0%id, 5.9%wa, 1.0%hi, 0.0%s
Mem 2075672k total, 2022668k used, 53004k free, 7156k buffers
Swap: 2031608k total, 132k used, 2031476k free, 1709372k cached

Pl D USER PR NI VIRT RES SHR S %PU %UEM TI ME+ nFLT COMVAND

3069 r oot 5 -10 450m 303m 280m S 61.5 15.0 10: 56.68 4562 vmar e- vk
3016 r oot 5-10 447m 300m 280m S 21.8 14.8 12:22.83 3978 vmar e- vk
3494 r oot 5 -10 402m 255m 251m S 3.0 12.6 1: 08. 65 3829 vmwar e- vnk
3624 root 5-10 401m 256m 251mS 1.0 12.6 0:29. 92 3747 vmar e- virx
<sni p>

The previous output demonstrates that a series of VMWare process are causing the majority of page faults (nFLT) which
would contribute to the surge of read requests seen in the previous commands. This surge has caused the WIO condition
on the system, rendering the CPU idle and causing the system to appear much slower.

Condition 2: Pipes Too Small - Read and Write Efficiency

Every 10 request to a disk takes a certain amount of time. This is due primarily to the fact that a disk must spin and a head
must seek. The spinning of a disk is often referred to as "rotational delay" (RD) and the moving of the head as a "disk
seek" (DS). The time it takes for each 10 request is calculated by adding DS and RD.

A disk's RD is fixed based on the RPM of the drive. An RD is considered half a revolution around a disk. To calculate RD
for a 10K RPM drive, perform the following:

1. Divide 10000 RPM by 60 seconds (10000/60 = 166 RPS)

© 2007 Darren Hoch - dhoch @strongmail.com 4

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

. Convert 1 of 166 to decimal (1/166 = 0.0006 seconds per Rotation)
Multiply the seconds per rotation by 1000 milliseconds (6 MS per rotation)
Divide the total in half (6/2 = 3 MS) or RD

. Add an average of 3 MS for seek time (3 MS + 3 MS = 6 MS)

Add 2 MS for latency (internal transfer) (6 MS + 2 MS = 8MS)

Divide 1000 MS by 8MS per IO (1000/8 = 125 IOPS)

NO vk WN

Each time an application issues an IO, it takes an average of 8MS to service that IO on a 10K RPM disk. Since this is a
fixed time, it is imperative that the disk be as efficient as possible with the time it will spend reading and writing to the disk.
The amount of IO requests are often measured in IOs Per Second (IOPS). The 10K RPM disk has the ability to push 120
to 150 (burst) IOPS. To measure the effectiveness of IOPS, divide the amount of IOPS by the amount of data read or
written for each IO.

Random vs Sequential 10

The relevance of KB per 10 depends on the workload of the system. There are two different types of workload categories
on a system. They are sequential and random.

Sequential 10

The i ost at command provides information about IOPS and the amount of data processed during each 10. Use the - x
switch with i ost at . Sequential workloads require large amounts of data to be read sequentially and at once. These
include applications like enterprise databases executing large queries and streaming media services capturing data. With
sequential workloads, the KB per IO ratio should be high. Sequential workload performance relies on the ability to move
large amounts of data as fast as possible. If each 10 costs time, it is imperative to get as much data out of that 10 as
possible.

iostat -x 1

<sni p>
avg-cpu: Ywser %i ce usys % dl e

0. 00 0. 00 57.14 42. 86
Devi ce: rrgnmis wqgnis rl's w's rsec/s wsec/s rkBl/'s wkB/'s avgrg-sz avgqu-sz await svctm uwtil
/dev/sda 0.00 12891.43 0.00 105.71 0. 00 106080. 00 0.00 53040.00 1003.46 1099.43 3442.43 26.49 280.00
/dev/sdal 0.00 0.00 0.00 0.00 0. 00 0.00 0. 00 0.00 0.00 0.00 0.00 0.00 0.00
/ dev/sda2 0.00 12857.14 0.00 5.71 0.00 105782. 86 0.00 52891.43 18512.00 559.14 780.00 490.00 280.00
/dev/sda3 0.00 34.29 0.00 100.00 0.00 297.14 0.00 148.57 2.97 540.29 3594.57 24.00 240.00
avg-cpu: Ywser %i ce sys % dl e

0.00 0.00 23.53 76.47
Devi ce: rrqm's wqm's rls ws rsec/s wsec/s rkB/'s wkB/ s avgrg-sz avgqu-sz await svctm util
/dev/sda 0.00 17320.59 0.00 102.94 0. 00 142305. 88 0.00 71152.94 1382.40 6975.29 952.29 28.57 294.12
/dev/sdal 0.00 0.00 0.00 0.00 0.00 0.00 0. 00 0. 00 0. 00 0.00 0.00 0.00 0.00
/ dev/ sda2 0.00 16844.12 0.00 102.94 0.00 138352.94 0.00 69176.47 1344.00 6809.71 952.29 28.57 294.12
/ dev/ sda3 0.00 476.47 0.00 0.00 0.00 3952.94 0.00 1976.47 0.00 165.59 0.00 0.00 276. 47

© 2007 Darren Hoch - dhoch @strongmail.com 5

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

The way to calculate the efficiency of IOPS is to divide the reads per second (r / s) and writes per second (W' s) by the
kilobytes read (r kB/ s) and written (WkB/ s) per second. In the above output, the amount of data written per 10 for
/ dev/ sda increases during each iteration:

53040/105 = 505KB per IO
71152/102 = 697KB per IO

Random IO

Random access workloads do not depend as much on size of data. They depend primarily on the amount of IOPS a disk
can push. Web and mail servers are examples of random access workloads. The 10 requests are rather small. Random
access workload relies on how many requests can be processed at once. Therefore, the amount of IOPS the disk can
push becomes crucial.

iostat -x 1

avg-cpu: Yuser %ni ce Ysys % dl e
2.04 0.00 97.96 0. 00

Devi ce: rrqgms wqm's rls ws rsec/s wsec/s rkB/'s wkB/ s avgrg-sz avgqu-sz await svctm wtil

/ dev/ sda 0.00 633.67 3.06 102.31 24.49 5281.63 12.24 2640.82 288.89 73.67 113.89 27.22 50.00
/ dev/ sdal 0.00 5.10 0.00 2.04 0.00 57.14 0. 00 28.57 28.00 1.12 55.00 55.00 11.22
/ dev/ sda2 0.00 628.57 3.06 100.27 24.49 5224.49 12.24 2612.24 321.50 72.55 121.25 30.63 50.00
/ dev/ sda3 0.00 0.00 0.00 0.00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0.00 0.00 0.00
avg-cpu: Yuser %i ce %ys Y%dle

2.15 0.00 97. 85 0.00

Devi ce: rrgms wqms rls ws rsec/s wsec/s rkB/ s wkB/ s avgrg-sz avgqu-sz await svctm %wtil
/ dev/ sda 0.00 41.94 6.45 130.98 51.61 352.69 25.81 3176.34 19.79 2.90 286.32 7.37 15.05
/ dev/ sdal 0.00 0.00 0.00 0.00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0.00 0.00 0.00
/ dev/ sda2 0.00 41.94 4.30 130.98 34.41 352.69 17.20 3176.34 21.18 2.90 320.00 8.24 15.05
/ dev/ sda3 0.00 0.00 2.15 0.00 17. 20 0.00 8. 60 0. 00 8. 00 0. 00 0.00 0.00 0.00

The previous output shows that the amount of IOPS for writes stays almost the same as the sequential output. The
difference is the actual write size per 10:

2640/102 = 23KB per 10
3176/130 = 24KB per 10

Condition 3: Slow Disks

Many disk configurations may not be a physical disk on the system. Some may be part of a volume group, NAS, shared
drive, or SAN. It is possible to measure the latency between the request time and the actual service time of a device.

© 2007 Darren Hoch - dhoch @strongmail.com 6

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

The following output was taken from a system with Linux volume groups under extreme sequential 1O write access.

iostat -x 1

<sni p>
avg-cpu: Ywser %i ce 9%sys % owai t % dl e

0.50 0.00 30.94 8.19 60.37
Devi ce: rrqms wqm's rls w's rsec/s wsec/s rkB/ s wkB/ s avgrg-sz avgqu-sz await svctm util
hda 0.00 2610.03 0.00 6.02 0. 00 20984. 62 0.00 10492.31 3485.78 8.59 315.28 56.50 34.01
hdb 0.00 2610.03 0.00 6.02 0. 00 20984. 62 0.00 10492.31 3485.78 8.40 284.56 56.44 33.98
md0 0. 00 0.00 0.00 0.00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
mdl 0. 00 0.00 0.00 2622.74 0. 00 20981. 94 0. 00 10490. 97 8. 00 0. 00 0. 00 0. 00
0. 00
avg- cpu: Yuser %i ce o%sys % owali t % dl e

0.83 0.00 59.27 4.01 35.89
Devi ce: rrqms wqm's rls w's rsec/s wsec/s rkB/'s wkB/ s avgrg-sz avgqu-sz await svctm util
hda 0.00 13595.64 0.00 10.07 0.00 109197. 32 0. 00 54598. 66 10846. 93 95.15 1872.43 100. 07 100. 74
hdb 0.00 13595.64 0.00 10.40 0.00 109197. 32 0. 00 54598. 66 10497.03 94.64 1854.52 96.84 100.74
nd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 00 0.00 0.00 0.00
mdl 0. 00 0.00 0.00 13649. 66 0.00 109197. 32 0. 00 54598. 66 8. 00 0. 00 0. 00 0. 00 0. 00
avg-cpu: Yuser %ni ce %sys % owai t % dl e

0.34 0. 00 20.94 62. 31 16. 42
Devi ce: rrgmis wqgnis rl's w's rsec/s wsec/s rkBl/'s wkB/'s avgrg-sz avgqu-sz await svctm wtil
hda 0.00 3420.07 0.00 11.37 0. 00 27478. 26 0.00 13739.13 2416.47 158.53 2997.18 88.24 100.33
hdb 0. 00 3420.07 0.00 11.37 0. 00 27478. 26 0.00 13739.13 2416.47 157.97 2964.79 88.24 100.33
nd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ndl 0.00 0.00 0.00 3434.78 0.00 27478. 26 0.00 13739.13 8. 00 0. 00 0.00 0.00
0. 00

The previous i ost at output monitors a RAID 1 device (/ dev/ nd/ 1). Notice the difference between the service time
(svct m and the average wait time (awai t). Both of these values are in milliseconds. The actual time it takes to service
the request is minimal compared to the time the system spends waiting for the response.

Since a mirror has to sync to another disk, the amount of IO doubles. Notice in the following output that the disks were
completely idle waiting on 10. Even though requests were still being made (W' s), there was no disk activity and a large
discrepancy between the service time and average wait time. Also notice that the disks were 100% utilized even though
nothing was writing. This is indicative of a complete stall waiting for the volume group software to catch up.

avg-cpu: Ywser %i ce 9%sys % owai t % dl e
0.00 0.00 1.00 52.68 46.32

Devi ce: rrqms wqm's rls ws rsec/s wsec/s rkB/ s wkB/ s avgrg-sz avgqu-sz await svctm util
hda 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00 0.00 145.44 5848.03 90.94 100.03
hdb 0. 00 0.00 0.00 10.67 0. 00 0. 00 0. 00 0. 00 0. 00 144.89 5872.97 93.78 100.03
md0 0. 00 0.00 0.00 0.00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
mdl 0. 00 0.00 0.00 0.00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
avg-cpu: Ywser %i ce %sys % owai t % dl e

0.17 0.00 0.84 49.00 50. 00

Devi ce: rrqm's wqm's rls w's rsec/s wsec/s rkB/'s wkB/ s avgrg-sz avgqu-sz await svctm util
hda 0.00 0.00 0.00 10.96 0.00 0.00 0.00 0.00 0.00 111.83 8053.45 90.94 99.70
hdb 0.00 0.00 0.00 10.96 0.00 0. 00 0.00 0.00 0.00 111.28 8003.18 90.94 99.70
nd0 0.00 0.00 0.00 0.00 0. 00 0. 00 0. 00 0.00 0.00 0. 00 0.00 0.00 0.00
ndl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 00 0.00 0.00 0.00

This behavior can also be observed using the sar -b command. This command shows IO statistics per device node

© 2007 Darren Hoch - dhoch @strongmail.com 7

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

number. To locate the node numbers of your devices, use an Is command with a -IL switch.

#1s -IL /dev/nmdl
brwrw--- 1 root disk 9, 1 Dec 30 08:13 /dev/ndl
1s -IL /dev/hda
brwrw--- 1 root disk 3, 0 Dec 30 08:13 /dev/ hda
1s -IL /dev/hdb
brwrw--- 1 root disk 3, 64 Dec 30 08:13 /dev/ hdb

The mirror device has a major number of 9 and a minor number of 1 or 9-1. The other two disks are 3-0 and 3-64. Looking
at the sar output, it appears that the RAID device issues a large amount of 10 writes to the underlying drives. The drives
end up timing out trying to process the requests.

sar -b 3

<sni p>

04:28:14 PM dev3-0 11.11 0. 00 106650. 51
04:28:14 PM dev3-64 10. 10 0.00 106634. 34
04:28: 14 PM dev9-0 0. 00 0. 00 0. 00
04:28: 14 PM dev9-1 13326. 26 0.00 106610.10
<sni p>

04:28:15 PM dev3-0 9.90 0. 00 0. 00
04:28:15 PM dev3-64 10. 89 0. 00 0. 00
04:28: 15 PM dev9-0 0. 00 0. 00 0. 00
04:28:15 PM dev9-1 0. 00 0. 00 0. 00
<sni p>

Condition 4: When Virtual Memory Kills 10

If the system does not have enough RAM to accommodate all requests, it must start to use the SWAP device. Just like file
system 10, writes to the SWAP device are just as costly. If the system is extremely deprived of RAM, it is possible that it
will create a paging storm to the SWAP disk. If the SWAP device is on the same file system as the data trying to be
accessed, the system will enter into contention for the 10 paths. This will cause a complete performance breakdown on
the system. If pages can't be read or written to disk, they will stay in RAM longer. If they stay in RAM longer, the kernel will
need to free the RAM. The problem is that the 10 channels are so clogged that nothing can be done. This inevitably can
lead to a kernel panic and crash of the system.

The following vmstat output demonstrates a system under memory distress. It is writing data out to the swap device:

procs ----------- MEeNDry---------- ---swap-- ----- io---- --system- ----cpu----
r b swpd free buff cache Si SO bi bo in Cs us sy id wa
17 1250 3248 45820 1488472 30 132 992 0 2437 7657 23 50 0 23

0

0 1376 3256 45820 1488888 57 245 416 0 2391 7173 10 90 0 O
12 0 1582 1688 45828 1490228 63 131 1348 76 2432 7315 10 90 O 10

2 3981 1848 45468 1489824 185 56 2300 68 2478 9149 15 12 0 73

2 10385 2400 44484 1489732 0 87 1112 20 2515 11620 0 12 O 88

2 12671 2280 43644 1488816 76 51 1812 204 2546 11407 20 45 0 35

© 2007 Darren Hoch - dhoch @strongmail.com 8

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

The previous output demonstrates a large amount of read requests into memory (bi). The requests are so many that the
system is short on memory (f r ee). This is causing the system to send blocks to the swap device (so) and the size of
swap keeps growing (swpd). Also notice a large percentage of WIO time (wa). This indicates that the CPU is starting to
slow because of 10 requests.

To see the effect the swapping to disk is having on the system, check the swap partition on the drive using iostat.

iostat -x 1

avg-cpu: Yuser %ni ce sys % dl e
0.00 0.00 100.00 0.00

Devi ce: rrgms wqms rls ws rsec/s wsec/s rkB/'s wkB/ s avgrg-sz avgqu-sz await svctm %wtil

/ dev/ sda 0.00 1766.67 4866.67 1700. 00 38933. 33 31200. 00 19466. 67 15600. 00 10. 68 6526.67 100.56 5.08
3333.33

/ dev/ sdal 0.00 933.33 0.00 0.00 0.00 7733.33 0.00 3866.67 0.00 20.00 2145.07 7.37 200.00
/ dev/ sda2 0.00 0.00 4833.33 0.00 38666.67 533.33 19333.33 266.67 8.11 373.33 8.07 6.90 87.00

/ dev/ sda3 0. 00 833.33 33.33 1700.00 266.67 22933. 33 133. 33 11466. 67 13.38 6133.33 358.46 11.35
1966. 67

In the previous example, both the swap device (/ dev/ sdal) and the file system device (/ dev/ sda3) are contending for
10. Both have high amounts of write requests per second (W' s) and high wait time (awai t) to low service time ratios
(svct m. This indicates that there is contention between the two partitions, causing both to under perform.

lll. Tuning 10 for Workloads

There are not many |O tuning parameters available for Linux. There are specific file system tuning parameters for each
file system. These have some impact on performance improvement. The hdparam command is also available to tune IDE
based disks. There are no specific SCSI/SAN tuning parameters available in stock Linux kernels although some patches
may exist if you wish to compile a custom kernel.

The key to tuning 10 workloads is to understand your architecture and balance application workload appropriately across
systems. You must be able to identify which application is causing an 10 bottleneck and then perform the following tasks
in order:

1. Tune the application using any parameters available.

2. If there is contention between two file systems on the same disk, move one file system to another HBA and disk
drive/array.

3. Add more hardware to the system.

4. Migrate the application to another system, either virtual or hardware.

© 2007 Darren Hoch - dhoch @strongmail.com 9

mailto:dhoch@strongmail.com

Extreme Linux Performance Monitoring Part I

References

e Ezlot, Phillip — Optimizing Linux Performance, Prentice Hall, Princeton NJ 2005 ISBN — 0-13-148682-9

e Johnson, Sandra K., Huizenga, Gerrit — Performance Tuning for Linux Servers, IBM Press, Upper Saddle River
NJ 2005 ISBN 0-13-144753-X

e Hoch, Darren — Extreme Linux Monitoring Part |, http://www.ufsdump.org 2006

© 2007 Darren Hoch - dhoch @strongmail.com

10

http://www.ufsdump.org/
mailto:dhoch@strongmail.com

